Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

Shimlas had the right attitude, says Scholtz
2016-02-10

 Description: Shimlas first match 2016  Tags: Shimlas

The lively Shimla flanker Daniel Maartens, who was the leading try scorer in the 2015 Varsity Cup, made a good impact as substitute against Ikeys in Cape Town.
Photo: Johan Roux

His rugby team had the right attitude to win in difficult conditions in Cape Town.

This is what Hendro Scholtz, Head Coach of Shimlas, had to say after the University of the Free State (UFS) started its Varsity Cup campaign on 8 February 2016 with a victory of 23-17 over Ikeys.

According to him, the UFS had to sweat hard until the end on a windy Green Mile, which has been the downfall of many opponents before. His substitutes also had a great impact.

Troublesome Cape wind

Shimlas have a tough draw this year, and to start in the Mother City was a huge task. Scholtz and his men have only three home matches and will play against most of the major teams in away matches.

“We knew it would be difficult in Cape Town. With the wind blowing as it does, one can't play as you would like to during the rest of the season,” the coach said.

“The guys had a will to win.”

The former Springbok believes that too much cannot be read from the first round results. The Shimlas will play their second match on 15 February 2016 against Tuks in Pretoria.

Replacements with good impact

Only the prop Rudolph Botha, flanker Fiffy Rampeta, and prop Teunis Nieuwoudt, who started against Ikeys, were involved in the 2015 final against Pukke.

Other big Shimla names, such as the prop Ox Nche, hooker Elandré Huggett, prop Conraad van Vuuren, and flanker Daniel Maartens, were sent onto the field in Cape Town after half-time.

“We had a plan with the replacements for the second half. They made a huge difference,” Scholtz said.

Rampeta was named Man of the Match, but it was Maartens and Co who turned the game in their team's favour in the second half.

Matsoele could be out of action for long

The Shimla fullback, Sechaba Matsoele, had to leave the game against Ikeys early because of a knee injury, and could be out of action for some time.

His scrumhalf, Zee Mkhabela, was also injured (by a blow to the head), so Shimlas will have to keep their fingers crossed for his quick recovery.

Scorers:
Shimlas 23 (7): Tries: Arthur Williams, Nardus Erasmus, Mosolwa Mafuma. Conversions: Stephan Janse van Rensburg (2).
Ikeys 17 (0): Tries: Khanyo Ngcukana, Nathan Nel. Conversion: Hilio de Abreu. Penalty: De Abreu.
Other results (home team first): Tuks 15, Pukke 38; UJ 19, Madibaz 12; Maties 40, CUT 0.

 

 

 

 


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept