Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

Biggest Bloemfontein art project comes to life
2016-07-11

Description: It’s My City Giraffe Tags: It’s My City Giraffe

Three sculptures in different places
in Bloemfontein will form part of
It’s My City, a large-scale public art
project from 8 to 16 July 2016
alongside the Vrystaat Arts Festival.
Photo: Xany Jansen van Vuuren

One of the biggest art projects Bloemfontein has ever seen. That is how Angela de Jesus, curator of the Johannes Stegmann Art Gallery at the University of the Free State (UFS), describes It’s My City. And the large-scale public art project involves the community of Bloemfontein/Mangaung’s participation.

The artwork, conceived by British artist, Alex Rinsler, will be on display from 8 to 16 July 2016, alongside the Vrystaat Arts Festival. Three sculptures, a Baby Giraffe, Mother Tree and Toy Windmill, each about 7.5 metres, will appear in Hoffman Square, Mapikela Square in Batho location, and on the Red Square of the UFS Bloemfontein Campus respectively.

Many from around the city included


Local lead artists – Marius Jansen van Vuuren (Baby Giraffe), Tshiamo Art and Crafts Development (Mother Tree), and Minè Kleynhans (Toy Windmill) – expressed their relationship to the city. According to De Jesus, the project includes “six artists; more than 20 job opportunities were created; and there were skills transfer for many more. Over 50 volunteers, 100 professionals, and hopefully thousands will take part.” It’s My City is the signature 2016 project of the Programme for Innovation in Artform Development, a partnership between the UFS and the festival, supported by the Andrew W. Mellon Foundation and the municipality of Mangaung.

People can connect in positive way

“What most excites me is that this work will create imagery that loads of people can connect with in a positive way, and write a new story,” says Rinsler. According to the public artist and cultural producer, people are invited to visit the sculptures, write down their wishes for the city and those they love, and add them to complete the artworks.

Sculptures meet each other at ceremony

On 16 July 2016, the sculptures will be led by three processions, convening at the Macufe village (corner of Elizabeth and Markgraaff streets). At 17:30, a short ceremony, free to attend, will follow where they will be dismantled in spectacular fashion, with graceful fire and pyrotechnics, and so bringing together many people’s wishes as one.

Photo Gallery
For more information visit the It's My City website
Click here for a press release about the project



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept