Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

Students receive hands-on crime scene investigation training
2016-09-02

Description: Crime scene investigation training Tags: Crime scene investigation training

Ntau Mafisa, a forensic science honours student
at the UFS, and Captain Samuel Sethunya from
the SAPS Crime Scene Management in
Bloemfontein.
Photo: Leonie Bolleurs

With murder and robbery rates on the rise, the Forensic Science Programme of the Department of Genetics at the University of the Free State is playing a key role in training South Africa’s future crime scene investigators and forensic laboratory analysts.

According to the Institute for Security Studies (ISS), murder and aggravated robbery rates for 2014/2015, as recorded by the South African Police Services (SAPS) have increased. Incidents of murder increased by 4.6% in the period from 2013/2014 to 2014/2015 and aggravated robbery increased by 8.5 % in the same period. The ISS is an African organisation thant enhances human security by providing independent and authoritative research, expert policy advice and capacity building.

Dr Ellen Mwenesongole, a forensic science lecturer at the Department of Genetics, said the university was one of a few universities in South Africa that actually had a forensic science programme, especially starting from undergraduate level.

Crime scene evaluation component incorporated in curriculum
As part of its Forensic Science Honours Programme, the department has, for the first time, incorporated a mock crime scene evaluation component in its curriculum. Students process a mock crime scene and are assessed based on how closely they follow standard operating procedures related to crime scenes and subsequent laboratory analysis of items of possible evidential value.

The mock crime scene forms part of a research project data collection of the honours students. In these projects students utilise different analytical methods to analyse and distinguish between different types of evidence such as hair fibres, cigarette butts, illicit drugs and dyes extracted from questioned documents and lipsticks.

Students utilise different analytical methods to analyse
and distinguish between different types of evidence.

This year, the department trained the first group of nine students in the Forensic Science Honours Programme. Dr Mwenesongole, who received her training in the UK at the University of Strathclyde in Glasgow, Scotland, and Anglia Ruskin University in Cambridge, England, said incorporating a crime scene evaluation component into the curriculum was a global trend at universities that were offering forensic science programmes.

Department of Genetics and SAPS collaborate
It is important to add this component to the student’s curriculum. In this way the university is equipping students not only with theoretical knowledge but practical knowledge on the importance of following proper protocol when collecting evidence at crime scenes and analysing it in the laboratory to reduce the risk of it becoming inadmissible in a court of law.

The Genetics Department has a good working relationship with the Forensic Science Laboratory and Free State Crime Scene Management of the Division Forensic Services of the SAPS. The mock crime scene was set up and assessed in collaboration with the Crime Scene Management Division of the SAPS. Although the SAPS provides specialist advanced training to its staff members, the university hopes to improve employability for students through such programmes.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept