Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

Chemistry research group receives international recognition
2016-10-28

Description: Chemistry research group  Tags: Chemistry research group

Dr Carla Pretorius mounts microcrystals with
Dumisani Kama while Pennie Mokolokolo
observe the technique.
Photo: Supplied


Crystals and crystallography form an integrated part of our daily lives, from bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, analysing rocks on the moon and Mars, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more.

In spite of this, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the 20th century, spanning the sciences. That is why this discipline is actively researched by a number of tertiary institutions around the globe as well as the Inorganic Chemistry Group of the Department of Chemistry at the University of the Free State (UFS).

Research by the Inorganic Chemistry Group includes:
•    clever design of model medicines to better detect cancer and study heart, bone and brain defects;
•    production of new compounds for making new and better automobile fuels and decrease carbon dioxide in the atmosphere;
•    generation and purification of new South African mineral resources for metals widely used in turbines which use wind energy.

A group of UFS students have received acknowledgement for their research at six international venues in the past few months.

Posters in Cameroon
Twelve postgraduate students, together with Prof André Roodt, Head of the Inorganic Chemistry division at the UFS, delivered three oral presentations, nine posters, one plenary and one keynote lecture abroad.

Four UFS students - Nina Morogoa, Pheello Nkoe, Alebel Bilay, and Mohammed Elmakki - who delivered posters at the First Pan African Conference on Crystallography in Dschang, Cameroon, received prizes for their presentations.

School and conference in Croatia

Students Orbett Alexander and Dumisani Kama were selected to attend the intense and demanding Third European Crystallographic School in Bôl, Croatia. Both Kama, Alexander and Prof Roodt gave oral presentations at the 24th Croatian-Slovenian Crystallographic Meeting at Brac Island, Croatia.

Kama, together with Dr Ferdi Groenewald, Dr Carla Pretorius and Pennie Mokolokolo, also attended the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The ESRF is a centre of excellence for fundamental and innovation-driven research. The storage ring at this laser facility can generate X-rays 100 billion times brighter than typical medical and laboratory X-ray sources.

Research in Switzerland

Kama and Mokolokolo also spent one month on research visits at the University of Zurich in Switzerland. Both Kama and Alexander were invited to present their research orally to the Institute of Inorganic Chemistry in Zurich, headed by Prof Roger Alberto.

In Basel, Switzerland, Dr Ferdi Groenewald, Dr Renier Koen, and Dr Truidie Venter all presented their research at the 30th European Crystallographic Meeting.

Prof Roodt said: “It is incredibly important that our postgraduate students get the chance to interact, discuss, and be taught by the best in the world and realise that hard work on basic and applied chemistry processes leads to broader recognition. The delegates to these international venues came from more than 60 countries and took note of our students work. With these young researchers, our future at the UFS and at Inorganic Chemistry is in good hands”.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept