Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

UFS welcomes Prof Francis Petersen as new Vice-Chancellor and Rector
2017-04-02

 

Prof Francis Petersen takes up office as the 14th Vice-Chancellor and Rector of the University of the Free State today.
 
“On behalf of the UFS Council and the university community, I would like to welcome Prof Petersen to the university. He brings to the UFS a distinguished academic record, confident leadership, innovative thinking, and an understanding of the extent of the challenges being experienced by universities in the broader South African context,” says Mr Willem Louw, Chairperson of the UFS Council. 
 
“I am excited to join the UFS and look forward to meeting the university community, to get to know the three campuses, and to engage with staff and students. In a way, it was a natural progression for me to be appointed in this position, having been Dean of the Faculty of Engineering and the Built Environment at the University of Cape Town (UCT), and then Deputy Vice-Chancellor: Institutional Innovation at the same university.  On the other hand, I believe that universities in South Africa need strong and innovative leadership. I would like to make a contribution to the higher-education system in this regard.  Moreover, I regard the UFS as a very good university, and see my challenge in taking the UFS to the next level,” says Prof Petersen.
 
“Challenges and making a difference motivate me – whether complex or simplistic, the opportunity to be able to provide solutions and taking people with me while developing these solutions, is what ultimately motivates me.”
 
“It is important that different viewpoints are respected. The UFS must be a place where everyone feels welcome. There must be a strong sense of belonging; staff and students must feel they are making a contribution to the university,” he says.
 
According to Prof Petersen, the major challenge for the university is its institutional climate.  “My focus would be to strive towards creating an institutional climate of inclusivity, respect for one another, valuing diversity in all its forms, and to make the university a welcoming place. The UFS is in the process of developing an Integrated Transformation Plan (ITP) that will serve as the road map to address the institutional climate challenge, but will also assist (if implemented effectively) in excelling the UFS in areas of teaching and learning, research and innovation, and community engagement through scholarship,” says Prof Petersen.

“I am a good listener, I am outcome-based, and my vision for the university includes diversity, inclusivity, and academic excellence,” he says.

Prof Petersen was born in Oudtshoorn and grew up in Malmesbury in the Western Cape, where he also matriculated. He graduated from Stellenbosch University with a BEng (Chem Eng), MEng (Metal Eng), and PhD (Eng) degrees and completed a short course on Financial Skills for Executive Management. He is a recipient of the Ernest Oppenheimer Memorial Trust Award for research excellence, and was visiting professor at the Cape Technikon and extraordinary professor in the Department of Chemical Engineering at Stellenbosch University. He is a regular reviewer of journals, and member of a range of editorial boards for international journals. He is also a registered professional engineer with the Engineering Council of South Africa and a Fellow of both the South African Institute of Mining and Metallurgy, and the South African Academy of Engineers.

 He brings to the position of Vice-Chancellor and Rector his extensive experience of management in both the industry and academic sectors. He has been the executive head of strategy at Anglo American Platinum and head of the Department of Chemical Engineering at the Cape Technikon (now Cape Peninsula University of Technology). Among others, he previously served as member on the Board of the Council of Scientific and Industrial Research, the National Advisory Council on Innovation, and the Council of the Academy of Science of South Africa.

 Prof Petersen is married and has two sons. He was appointed by the UFS Council at the end of 2016 after Prof Jonathan Jansen stepped down as Vice-Chancellor and Rector on 31 August 2016, serving in this position since July 2009. Prof Nicky Morgan, Vice-Rector: Operations at the UFS, has been acting Vice-Chancellor and Rector since 1 September 2016.

 

Released by:
Lacea Loader (Director: Communication and Brand Management)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za
Fax: +27 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept