Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

Five mega projects to help reposition the UFS
2008-02-01

The University of the Free State (UFS) today announced that it will focus on five mega-projects to help reposition the UFS in the next five years as one of South Africa’s leading universities that is successfully managing excellence and diversity.

Speaking at the official opening of the university today, the Rector and Vice-Chancellor, Prof. Frederick Fourie, identified the five mega projects as:

  • The successful implementation of strategic academic clusters to focus the teaching and research expertise of the UFS.
  • The development and implementation of new models of teaching and learning.
  • Finding new sources of income (including third-stream income) to minimise dependence on government subsidies and tuition fees.
  • Creating a new institutional culture for the university by finalising the Institutional Charter.
  • The ongoing transformation of the UFS in all its dimensions.

According to Prof. Fourie, the strategic clusters – initiated in 2006 – are a very important initiative which is aimed at making the UFS a world leader in six broad areas. The focus of the six clusters has now been determined. These clusters are not just research based, but will include postgraduate programmes and filter down to undergraduate learning programmes and curricula.

He also indicated that other research at the UFS will continue to be supported and funded as before.

The second project, to establish a new teaching and learning model, is meant to address current success rates which indicate the need for this issue to receive a high priority.

New income streams to enable higher levels of financial sustainability is the third project, especially in view of dwindling government subsidies and limits on student numbers. This is necessary to fund sustained higher levels of investment in the quality of academic activities and in the necessary capacity and facilities.

Prof. Fourie said the fourth project regarding institutional culture is an ongoing effort to create a sense of belonging for all staff and students at the UFS through the adoption of an Institutional Charter for the university.

“What the draft Charter does – in addition to describing overarching values espoused by the institution and its people – is to describe the outlines and constitutive principles of the ‘post-redress’ UFS,” said Prof. Fourie.

The Charter – initially launched in 2007 – is and remains a critical element of guiding transformation effectively and speedily towards a widely-accepted goal. It is a critical element of the “social sustainability and robustness” of a new UFS, especially in tumultuous political times.

The fifth project is the Transformation Plan, launched in 2007. “We simply must pursue this plan diligently, given our commitment to comprehensive and deep transformation, and to best practice transformation. All universities will have to face up to the challenge of transformation and the UFS can break new ground, as it did in the past by managing transformation innovatively and creating a campus where all can find their rightful place,” said Prof. Fourie.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
1 February 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept