Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

Guidelines for diminishing the possible impact of power interruptions on academic activities at the UFS
2008-01-31

The Executive Management of the UFS resolved to attempt to manage the possible impact of power interruptions on teaching and learning proactively. Our greatest challenge is to adapt to what we cannot control at present and, as far as possible, refrain from compromising the quality of teaching and learning at the UFS.

First the following realities are important:

  • There is no clarity regarding the period of disruption. It is possible that it may last for a few months to approximately five years.
  • At present Eskom (as well as Centlec) is not giving any guarantees that the scheduled interruptions will be adhered to. It comes down to this that the power supply may be interrupted without notice, but can also be switched back on in an unpredictable manner.
  • Certain scheduled teaching-learning activities/classes, etc. may (initially) be affected very negatively, as the UFS is working according to a scheduled weekly module timetable at present.
  • During the day certain venues with natural lighting and ventilation may remain suitable for contact sessions, while towards evening venues will no longer be suitable for the presentation of classes.
  • Lecturers will have to fall back on tried and tested presentation methods not linked to electricity, without neglecting innovative technology-linked presentation methods, or will have to schedule alternative teaching-learning activities for lost teaching-learning time.

Against the background of the above-mentioned realities, we secondly request you to comply with the following guidelines as far as possible:

  1.  In addition to your module work programme, develop an alternative programme (which can, for example, among others, consist of additional lectures or a more rapid work rate) in which provision is made for a loss of at least two weeks’ class/contact time during the semester. Consult Centlec’s schedule of foreseen power interruptions for this planning.
  2. Should it appear that your class(es) will probably be disrupted seriously by the scheduled power interruptions, you should contact your dean for possible rescheduling of your timeslot and a supplementary timetable. A prescheduled supplementary timetable for Friday afternoons and Saturdays and/or other suitable times will be compiled for this purpose in co-operation with faculties.
  3. The principle of equivalent educational treatment of day and evening lectures must be maintained at all times. Great sensitivity must be shown by, for instance, not only rescheduling the lectures of evening students - given specifically the sensitivity regarding language and the distribution of day and evening lectures.
  4. In the case of full-time undergraduate courses, no lectures should be cancelled beforehand, even when a power interruption is announced, as power interruptions sometimes do not take place or are of shorter duration than announced. If the power supply is interrupted, it should not be accepted that it will remain off and that subsequent lectures will not take place. Should a power interruption occur in a venue, lecturers and students must wait for at least ten minutes before the lecture is cancelled. Should natural lighting and ventilation make it possible to continue with the lecture, it should be done.
  5. Our point of departure is that no student must be able to use the power interruptions and non-presentation/cancellation of lectures as an argument for having failed modules, for poor academic performance or to negotiate for a change of examination scheduling.

Thirdly we wish to make suggestions regarding teaching and learning strategies (which can be especially useful in case of a power interruption).

  • Emphasise a greater measure of self-activity (self-initiative) on the part of students in this unpredictable environment right from the start.
  • Also emphasise the completion of assessment assignments in good time, so that students cannot use power interruptions as an excuse for late submission. Flexibility will, however, have to be maintained.
  • Place your PowerPoint presentations and any other supplementary learning materials on the web.
  • Use the opportunity to stimulate buzz groups, group work, panel discussions and peer evaluation.

Please also feel free to consult Dr Saretha Brussow, Head: Teaching, Learning and Assessment Division at the Centre for Higher Education Studies and Development, about alternative teaching, learning and assessment strategies. Phone extension x2448 or send an email to sbrussow.rd@ufs.ac.za .

Thank you for your friendly co-operation!

Prof. D. Hay
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept