Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 November 2022 | Story Leonie Bolleurs | Photo Supplied
Dr Liezel Rudolph
Dr Liezel Rudolph, a lecturer in the Department of Geography, recently returned from an expedition to Gough Island in the South Atlantic Ocean, where she was involved in research that aims to better understand the landscape evolution of some subantarctic islands and their response to long-term climate change.

A study of subantarctic islands tells us that, in general, the Southern Hemisphere is experiencing a rise in temperature, with an increase in rainfall in some locations, and other areas becoming drier. The annual temperature and rainfall average remain the same in some places, but there is a change in seasonality and synoptic weather events.

This is according to Dr Liezel Rudolph, a lecturer in the Department of Geography at the University of the Free State (UFS). She recently returned from an expedition to Gough Island in the South Atlantic Ocean, supported by the South African National Department of Forestry, Fisheries and the Environment, the National Research Foundation, and the Royal Society for the Protection of Birds.

This teacher of modules on Process Geomorphology and fieldwork techniques at the UFS, says the objective of her work on the island was to do a geomorphological survey of the island and explore the suitability of geochronological dating techniques on the island’s substrate. 

She explains that with geochronological methods one can determine the age of rock material as well as the rate of landscape change on the island. “In other words, dating when the volcano was formed and determining how long it takes for weathering to break down the rock material, and erosional processes to remove soil material.”
 
The research she is involved in, forms part of a SANAP-NRF-funded project, Sub-Antarctic Landscape Climate Interactions, which aims to better understand the landscape evolution of some subantarctic Islands and their response to long-term climate change. 

Studying the past to understand the present

According to her, studying landscape change enables one to better understand climate change over a long period of time. 

She states that the more regions are investigated, the clearer the picture of climate change will become. “The Earth is a large, complex system. By studying climate change in one location, one cannot simply assume that the same type and rate of change is occurring everywhere else. It would be like imaging a 1 000-piece puzzle by building with 10 pieces. The Southern Hemisphere is predominantly ocean, which makes it difficult to pin down land-atmosphere interactions – but the subantarctic islands give us the opportunity to create data points for the Southern Hemisphere, which would otherwise be a very large missing piece of the puzzle,” explains Dr Rudolph.

She says the interaction between ocean, atmosphere, and land remains complex and it is important to study the entire picture in order to fully understand how this is happening. Especially since the climate is changing at a drastic rate.

Dr Rudolph, whose research at the UFS is focused on constraining the last glaciation of subantarctic Marion Island though various proxies and dating techniques, says the subantarctic islands are very sensitive to changes in climate. 

A clearer picture of climate change

She was part of previous expeditions to the island. Although all these expeditions had different goals, according to her, they all aimed to answer the same questions, which are how the island’s landscape has developed throughout history and what the climatic drivers were during its evolution. 

“The landscape responds to changes in temperature and precipitation. Under colder, wetter conditions – when the island’s surface is subject to a freeze-thaw process – a range of peri-glacial landforms will develop. These landforms will still be evident in the landscape years later under a different climate, for example, warmer or drier conditions. We can study these landforms in real-time and establish whether they are actively forming or are relict features that formed under different climatic environments,” remarks Dr Rudolph.

The research, which is taking place in collaboration with the British Antarctic Survey, is co-led by Prof Werner Nel from the University of Fort Hare, and Prof David Hedding from the University of South Africa. 

• Dr Rudolph is grateful to the Government of Tristan da Cunha, which is responsible for managing the conservation of Gough Island, for permitting them to do scientific work on the island. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept