Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 November 2022 | Story Leonie Bolleurs | Photo Supplied
Dr Liezel Rudolph
Dr Liezel Rudolph, a lecturer in the Department of Geography, recently returned from an expedition to Gough Island in the South Atlantic Ocean, where she was involved in research that aims to better understand the landscape evolution of some subantarctic islands and their response to long-term climate change.

A study of subantarctic islands tells us that, in general, the Southern Hemisphere is experiencing a rise in temperature, with an increase in rainfall in some locations, and other areas becoming drier. The annual temperature and rainfall average remain the same in some places, but there is a change in seasonality and synoptic weather events.

This is according to Dr Liezel Rudolph, a lecturer in the Department of Geography at the University of the Free State (UFS). She recently returned from an expedition to Gough Island in the South Atlantic Ocean, supported by the South African National Department of Forestry, Fisheries and the Environment, the National Research Foundation, and the Royal Society for the Protection of Birds.

This teacher of modules on Process Geomorphology and fieldwork techniques at the UFS, says the objective of her work on the island was to do a geomorphological survey of the island and explore the suitability of geochronological dating techniques on the island’s substrate. 

She explains that with geochronological methods one can determine the age of rock material as well as the rate of landscape change on the island. “In other words, dating when the volcano was formed and determining how long it takes for weathering to break down the rock material, and erosional processes to remove soil material.”
 
The research she is involved in, forms part of a SANAP-NRF-funded project, Sub-Antarctic Landscape Climate Interactions, which aims to better understand the landscape evolution of some subantarctic Islands and their response to long-term climate change. 

Studying the past to understand the present

According to her, studying landscape change enables one to better understand climate change over a long period of time. 

She states that the more regions are investigated, the clearer the picture of climate change will become. “The Earth is a large, complex system. By studying climate change in one location, one cannot simply assume that the same type and rate of change is occurring everywhere else. It would be like imaging a 1 000-piece puzzle by building with 10 pieces. The Southern Hemisphere is predominantly ocean, which makes it difficult to pin down land-atmosphere interactions – but the subantarctic islands give us the opportunity to create data points for the Southern Hemisphere, which would otherwise be a very large missing piece of the puzzle,” explains Dr Rudolph.

She says the interaction between ocean, atmosphere, and land remains complex and it is important to study the entire picture in order to fully understand how this is happening. Especially since the climate is changing at a drastic rate.

Dr Rudolph, whose research at the UFS is focused on constraining the last glaciation of subantarctic Marion Island though various proxies and dating techniques, says the subantarctic islands are very sensitive to changes in climate. 

A clearer picture of climate change

She was part of previous expeditions to the island. Although all these expeditions had different goals, according to her, they all aimed to answer the same questions, which are how the island’s landscape has developed throughout history and what the climatic drivers were during its evolution. 

“The landscape responds to changes in temperature and precipitation. Under colder, wetter conditions – when the island’s surface is subject to a freeze-thaw process – a range of peri-glacial landforms will develop. These landforms will still be evident in the landscape years later under a different climate, for example, warmer or drier conditions. We can study these landforms in real-time and establish whether they are actively forming or are relict features that formed under different climatic environments,” remarks Dr Rudolph.

The research, which is taking place in collaboration with the British Antarctic Survey, is co-led by Prof Werner Nel from the University of Fort Hare, and Prof David Hedding from the University of South Africa. 

• Dr Rudolph is grateful to the Government of Tristan da Cunha, which is responsible for managing the conservation of Gough Island, for permitting them to do scientific work on the island. 

News Archive

Science and goodwill meet drought-stricken communities
2016-03-02

Description: Disinfecting tankered water  Tags: Disinfecting water

“Everyone should contribute to the delivery of clean water to every individual,” says UFS researcher.

The drought in South Africa has impacted the country in many ways. Apart from its economic and environmental implications, the drought also has social implications, leaving some communities without water.

Since 21 January 2016, the Department of Water and Sanitation (DWS) is working together with the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State. Dr Mariana Erasmus, post-doctoral fellow in the department, was appointed to lead a project for disinfecting tankered water supplied by the DWS to communities without water in the Qwaqwa area - which falls under the Maluti-a-Phufung Local Municipality.

She is working on the project with Robbie Erasmus from BioSense Solutions and Martin Bambo from DWS. A total of 53 trucks, 91 tanks, and 420 500 litres of water was disinfected so far, using sodium hypochlorite. “This is standard practice around the world,” Dr Erasmus said.

The work done by the UFS and DWS, who is monitoring the water quality as well as the process of water delivery, is very important. Disinfecting the trucks used to deliver water to drought-stricken communities decreases the formation of biofilm inside the tanks. “The biofilm could contain harmful bacteria such as E-coli. It is important to note that this is mostly the result of secondary pollution, since the water quality from the source where it was taken from, proved to be good. Drinking water with this harmful bacteria that has not been properly managed, can lead to health issues in humans when consumed,” Dr Erasmus said.

The Department of Microbial, Biochemical, and Food Biotechnology, interacting with the DWS on several water-related issues, volunteered to get involved in the project. They strongly believe that everyone should contribute to the delivery of clean water to every individual.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept