Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 November 2022 | Story Leonie Bolleurs | Photo Supplied
Dr Liezel Rudolph
Dr Liezel Rudolph, a lecturer in the Department of Geography, recently returned from an expedition to Gough Island in the South Atlantic Ocean, where she was involved in research that aims to better understand the landscape evolution of some subantarctic islands and their response to long-term climate change.

A study of subantarctic islands tells us that, in general, the Southern Hemisphere is experiencing a rise in temperature, with an increase in rainfall in some locations, and other areas becoming drier. The annual temperature and rainfall average remain the same in some places, but there is a change in seasonality and synoptic weather events.

This is according to Dr Liezel Rudolph, a lecturer in the Department of Geography at the University of the Free State (UFS). She recently returned from an expedition to Gough Island in the South Atlantic Ocean, supported by the South African National Department of Forestry, Fisheries and the Environment, the National Research Foundation, and the Royal Society for the Protection of Birds.

This teacher of modules on Process Geomorphology and fieldwork techniques at the UFS, says the objective of her work on the island was to do a geomorphological survey of the island and explore the suitability of geochronological dating techniques on the island’s substrate. 

She explains that with geochronological methods one can determine the age of rock material as well as the rate of landscape change on the island. “In other words, dating when the volcano was formed and determining how long it takes for weathering to break down the rock material, and erosional processes to remove soil material.”
 
The research she is involved in, forms part of a SANAP-NRF-funded project, Sub-Antarctic Landscape Climate Interactions, which aims to better understand the landscape evolution of some subantarctic Islands and their response to long-term climate change. 

Studying the past to understand the present

According to her, studying landscape change enables one to better understand climate change over a long period of time. 

She states that the more regions are investigated, the clearer the picture of climate change will become. “The Earth is a large, complex system. By studying climate change in one location, one cannot simply assume that the same type and rate of change is occurring everywhere else. It would be like imaging a 1 000-piece puzzle by building with 10 pieces. The Southern Hemisphere is predominantly ocean, which makes it difficult to pin down land-atmosphere interactions – but the subantarctic islands give us the opportunity to create data points for the Southern Hemisphere, which would otherwise be a very large missing piece of the puzzle,” explains Dr Rudolph.

She says the interaction between ocean, atmosphere, and land remains complex and it is important to study the entire picture in order to fully understand how this is happening. Especially since the climate is changing at a drastic rate.

Dr Rudolph, whose research at the UFS is focused on constraining the last glaciation of subantarctic Marion Island though various proxies and dating techniques, says the subantarctic islands are very sensitive to changes in climate. 

A clearer picture of climate change

She was part of previous expeditions to the island. Although all these expeditions had different goals, according to her, they all aimed to answer the same questions, which are how the island’s landscape has developed throughout history and what the climatic drivers were during its evolution. 

“The landscape responds to changes in temperature and precipitation. Under colder, wetter conditions – when the island’s surface is subject to a freeze-thaw process – a range of peri-glacial landforms will develop. These landforms will still be evident in the landscape years later under a different climate, for example, warmer or drier conditions. We can study these landforms in real-time and establish whether they are actively forming or are relict features that formed under different climatic environments,” remarks Dr Rudolph.

The research, which is taking place in collaboration with the British Antarctic Survey, is co-led by Prof Werner Nel from the University of Fort Hare, and Prof David Hedding from the University of South Africa. 

• Dr Rudolph is grateful to the Government of Tristan da Cunha, which is responsible for managing the conservation of Gough Island, for permitting them to do scientific work on the island. 

News Archive

UFS alumnus receives PhD in Statistics from the University of Oxford
2016-06-03

Description: DW Bester  Tags: DW Bester

In May of this year, DW Bester obtained
a DPhil in Statistics at the University of
Oxford.
Photo: Supplied

On 14 May this year, Dr DW Bester received a DPhil in Statistics from the University of Oxford. The entire ceremony, which was held in the Sheldonian Theatre in Oxford, was conducted in Latin, as has been the case for the past 800 years.

Dr Bester completed his undergraduate studies and his honours degree at the University of the Free State (UFS). “At first, I was only planning to study for a master’s degree, but was privileged to get an opportunity to do a PhD as well. I didn’t think twice!” he says.

Studies at the University of Oxford


Universities in England do not require a master’s degree for PhD studies. With the help of Prof Max Finkelstein from the UFS Department of Mathematical Statistics and Actuarial Science, Dr Bester registered for the DPhil programme in Statistics directly after his honours studies.

“The title of my thesis was: Joint survival models: A Bayesian investigation of longitudinal volatility. It dealt with a problem in the medical field to determine the cause of stroke risk: is it the absolute level of blood pressure, or the volatility thereof? The analysis of this question led to interesting models which needed advanced application techniques. I had to study these techniques and write programmes for their application.

Although Dr Bester is working currently as the technical head of a company that calculates insurance for power stations, satellites, rockets, and cyber risks, he would like to continue working with his Oxford supervisor in future to make the techniques they have developed more accessible for researchers outside of the field of statistics.
 
“Studying at Oxford requires hard work, perseverance, and a lot of luck. Luck plays a big role, since there are no guarantees that hard work will ensure you a spot in one of the top universities.

Regarding his studies at Oxford, Dr Bester thinks back on his exposure to the GNU/Linux operating system, and free software. “I have seen how valuable this is for analyses in practice. I also had the privilege of meeting the father of free software, Richard Stallman,” Dr Bester says.

2011 Rhodes Scholar

He was elected as Rhodes Scholar in 2011. According to Dr Bester, who has been interested in Mathematics since high school, the Rhodes scholarship was something of a fluke. He applied for the Rhodes scholarship on the recommendation of Prof Robert Schall of the Department of Mathematical Statistics and Actuarial Science.

Role of the UFS in his successes


In addition to the continued support from the team of passionate professors and lecturers at the UFS, the actuarial degree at the UFS is fraught with statistics. Emphasis is also placed on Bayesian statistics. This was crucial to his studies at Oxford. According to Dr Bester, this topic is emphasised strongly in the international statistics community.

Dr Bester regards the work done by two of his lecturers, Michael von Maltitz and Sean van der Merwe, among his highlights at the UFS. Since our first year, they have created an atmosphere of camaraderie among the students. “I think this contributed to the success of everybody. They also make an effort to present topics outside of the syllabus regularly,” says Bester.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept