Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 November 2022 | Story Leonie Bolleurs | Photo Supplied
Dr Liezel Rudolph
Dr Liezel Rudolph, a lecturer in the Department of Geography, recently returned from an expedition to Gough Island in the South Atlantic Ocean, where she was involved in research that aims to better understand the landscape evolution of some subantarctic islands and their response to long-term climate change.

A study of subantarctic islands tells us that, in general, the Southern Hemisphere is experiencing a rise in temperature, with an increase in rainfall in some locations, and other areas becoming drier. The annual temperature and rainfall average remain the same in some places, but there is a change in seasonality and synoptic weather events.

This is according to Dr Liezel Rudolph, a lecturer in the Department of Geography at the University of the Free State (UFS). She recently returned from an expedition to Gough Island in the South Atlantic Ocean, supported by the South African National Department of Forestry, Fisheries and the Environment, the National Research Foundation, and the Royal Society for the Protection of Birds.

This teacher of modules on Process Geomorphology and fieldwork techniques at the UFS, says the objective of her work on the island was to do a geomorphological survey of the island and explore the suitability of geochronological dating techniques on the island’s substrate. 

She explains that with geochronological methods one can determine the age of rock material as well as the rate of landscape change on the island. “In other words, dating when the volcano was formed and determining how long it takes for weathering to break down the rock material, and erosional processes to remove soil material.”
 
The research she is involved in, forms part of a SANAP-NRF-funded project, Sub-Antarctic Landscape Climate Interactions, which aims to better understand the landscape evolution of some subantarctic Islands and their response to long-term climate change. 

Studying the past to understand the present

According to her, studying landscape change enables one to better understand climate change over a long period of time. 

She states that the more regions are investigated, the clearer the picture of climate change will become. “The Earth is a large, complex system. By studying climate change in one location, one cannot simply assume that the same type and rate of change is occurring everywhere else. It would be like imaging a 1 000-piece puzzle by building with 10 pieces. The Southern Hemisphere is predominantly ocean, which makes it difficult to pin down land-atmosphere interactions – but the subantarctic islands give us the opportunity to create data points for the Southern Hemisphere, which would otherwise be a very large missing piece of the puzzle,” explains Dr Rudolph.

She says the interaction between ocean, atmosphere, and land remains complex and it is important to study the entire picture in order to fully understand how this is happening. Especially since the climate is changing at a drastic rate.

Dr Rudolph, whose research at the UFS is focused on constraining the last glaciation of subantarctic Marion Island though various proxies and dating techniques, says the subantarctic islands are very sensitive to changes in climate. 

A clearer picture of climate change

She was part of previous expeditions to the island. Although all these expeditions had different goals, according to her, they all aimed to answer the same questions, which are how the island’s landscape has developed throughout history and what the climatic drivers were during its evolution. 

“The landscape responds to changes in temperature and precipitation. Under colder, wetter conditions – when the island’s surface is subject to a freeze-thaw process – a range of peri-glacial landforms will develop. These landforms will still be evident in the landscape years later under a different climate, for example, warmer or drier conditions. We can study these landforms in real-time and establish whether they are actively forming or are relict features that formed under different climatic environments,” remarks Dr Rudolph.

The research, which is taking place in collaboration with the British Antarctic Survey, is co-led by Prof Werner Nel from the University of Fort Hare, and Prof David Hedding from the University of South Africa. 

• Dr Rudolph is grateful to the Government of Tristan da Cunha, which is responsible for managing the conservation of Gough Island, for permitting them to do scientific work on the island. 

News Archive

Dr Francois Deacon appears in international film, Last of the Longnecks, due to research on giraffes
2017-04-04

Description: Giraffe research read more  Tags: Giraffe research read more

Dr Francois Deacon was invited by the producer of Last
of the Longnecks
to be part of a panel handling a question-
and-answer-session about the film.
Photo: Supplied

A great honour was bestowed on a researcher at the University of the Free State (UFS) when he was invited to the preview of the documentary film, Last of the Longnecks. Dr Francois Deacon, lecturer and researcher in the Department of Animal, Wildlife and Grassland Sciences at the UFS, who also has a role in the film, attended the preview at the Carnegie Institution for Science’s Smithsonian National Museum in Washington DC, in the US, in March this year. The preview formed part of the DC Environmental Film Festival.

The Environmental Film Festival in the US capital is the world’s leading showcase of films with an environmental theme and which aims to improve the public’s understanding of the environment through the power of film. During the festival, the largest such festival in the US, more than 150 films were shown to an audience of 30 000 plus. 

Dr Deacon was invited by the producer of Last of the Longnecks to be part of a panel handling a question-and-answer-session about the film directly after the show. He described it as the greatest moment of his life. 

Role in the film Last of the Longnecks

“My role in the film was as the researcher studying giraffes in their natural habitat in order to understand them better, so that we may better protect them, and be able to provide better education on the problem in Africa,” says Dr Deacon. 

“Together with Prof Nico Smit, also from the UFS Department of Animal, Wildlife and Grassland Sciences, Hennie Butler from the Department of Zoology, and Martin Haupt from Africa Wildlife Tracking, we were the first researchers in the world to equip giraffes with GPS collars and to conduct research on this initiative,” he says. This ground-breaking research has attracted international media attention to Dr Deacon and Prof Smit. 

“Satellite tracking is proving to be extremely valuable in the wildlife environment. The unit is based on a mobile global two-way communication platform, utilising two-way data satellite communication, complete with GPS systems.

“It allows us to track animals day and night, while we monitor their movements remotely from a computer over a period of a few years. These systems make the efficient control and monitoring of wildlife in all weather conditions and in near-to-real time possible. We can even communicate with the animals, calling up their positions or changing the tracking schedules,” says Dr Deacon.

The collars, which have been designed to follow giraffes, enable researchers to obtain and apply highly accurate data in order to conduct research. Data can be analysed to determine territory, distribution or habitat preference for any particular species.

Over a period of three years (2014-2016), the Last of the Longnecks team from Iniosante LLC captured on film how Dr Deacon and his team used the GPS collars in Africa to collect data and conduct research on the animals.

“With our research, which aims to understand why giraffes are becoming extinct in Africa, we are looking at the animal in its habitat but not only the animal on its own. If the habitat of these animals is lost, they will be lost as well. Therefore, our focus is on conservation and better understanding the habitat. The giraffe is only a tool to better understand the habitat problem,” says Dr Deacon. 

Since the beginning of his research Dr Deacon and his team have had six new collar designs, with animals in four different reserves being equipped with the collars. The collars use the best technology available in the world and make it possible to determine how giraffes communicate over long distances, and how their sleep patterns function. Physiological and biological focus is placed on the giraffe’s stress levels, natural hormone cycles, and milk quality in cows. 

Description: Giraffe 2017 Tags: Giraffe 2017

Photo: Supplied

Experience at the film festival

“Absolutely amazing. Totally beyond our frame of reference as South Africans.” This is how Dr Deacon describes his experience of the three days in Washington DC during the film festival.

“It was an absolute honour to be part of the global preview of the film and to be able to work with Ashley Davison, the director of the film, and his team. I am just a rural farm boy who dreams big, and now this dream is known worldwide!” he says. 

The film, which will be launched in April, will be screened in South Africa on the National Geographic channel in May 2017. Meanwhile, the film will also be shown at eight other film festivals in the US. 

Work will start on a follow-up documentary in October and Dr Deacon is excited about the prospect. A mobile X-ray machine will be available from October. Internal sonars could also be performed on each of the animals. Researchers from around the world will form part of the team which will be led and co-ordinated by Dr Deacon and his co-workers at the UFS.

Former articles: 

18 Nov 2016: http://www.ufs.ac.za/templates/news-archive-item?news=7964 
23 August 2016: http://www.ufs.ac.za/templates/news-archive-item?news=7856 
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept