Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 November 2022 | Story Leonie Bolleurs | Photo Supplied
Dr Liezel Rudolph
Dr Liezel Rudolph, a lecturer in the Department of Geography, recently returned from an expedition to Gough Island in the South Atlantic Ocean, where she was involved in research that aims to better understand the landscape evolution of some subantarctic islands and their response to long-term climate change.

A study of subantarctic islands tells us that, in general, the Southern Hemisphere is experiencing a rise in temperature, with an increase in rainfall in some locations, and other areas becoming drier. The annual temperature and rainfall average remain the same in some places, but there is a change in seasonality and synoptic weather events.

This is according to Dr Liezel Rudolph, a lecturer in the Department of Geography at the University of the Free State (UFS). She recently returned from an expedition to Gough Island in the South Atlantic Ocean, supported by the South African National Department of Forestry, Fisheries and the Environment, the National Research Foundation, and the Royal Society for the Protection of Birds.

This teacher of modules on Process Geomorphology and fieldwork techniques at the UFS, says the objective of her work on the island was to do a geomorphological survey of the island and explore the suitability of geochronological dating techniques on the island’s substrate. 

She explains that with geochronological methods one can determine the age of rock material as well as the rate of landscape change on the island. “In other words, dating when the volcano was formed and determining how long it takes for weathering to break down the rock material, and erosional processes to remove soil material.”
 
The research she is involved in, forms part of a SANAP-NRF-funded project, Sub-Antarctic Landscape Climate Interactions, which aims to better understand the landscape evolution of some subantarctic Islands and their response to long-term climate change. 

Studying the past to understand the present

According to her, studying landscape change enables one to better understand climate change over a long period of time. 

She states that the more regions are investigated, the clearer the picture of climate change will become. “The Earth is a large, complex system. By studying climate change in one location, one cannot simply assume that the same type and rate of change is occurring everywhere else. It would be like imaging a 1 000-piece puzzle by building with 10 pieces. The Southern Hemisphere is predominantly ocean, which makes it difficult to pin down land-atmosphere interactions – but the subantarctic islands give us the opportunity to create data points for the Southern Hemisphere, which would otherwise be a very large missing piece of the puzzle,” explains Dr Rudolph.

She says the interaction between ocean, atmosphere, and land remains complex and it is important to study the entire picture in order to fully understand how this is happening. Especially since the climate is changing at a drastic rate.

Dr Rudolph, whose research at the UFS is focused on constraining the last glaciation of subantarctic Marion Island though various proxies and dating techniques, says the subantarctic islands are very sensitive to changes in climate. 

A clearer picture of climate change

She was part of previous expeditions to the island. Although all these expeditions had different goals, according to her, they all aimed to answer the same questions, which are how the island’s landscape has developed throughout history and what the climatic drivers were during its evolution. 

“The landscape responds to changes in temperature and precipitation. Under colder, wetter conditions – when the island’s surface is subject to a freeze-thaw process – a range of peri-glacial landforms will develop. These landforms will still be evident in the landscape years later under a different climate, for example, warmer or drier conditions. We can study these landforms in real-time and establish whether they are actively forming or are relict features that formed under different climatic environments,” remarks Dr Rudolph.

The research, which is taking place in collaboration with the British Antarctic Survey, is co-led by Prof Werner Nel from the University of Fort Hare, and Prof David Hedding from the University of South Africa. 

• Dr Rudolph is grateful to the Government of Tristan da Cunha, which is responsible for managing the conservation of Gough Island, for permitting them to do scientific work on the island. 

News Archive

UFS has a contingency plan for load shedding
2008-02-13


The University of the Free State (UFS) has put in place a contingency plan to ensure that there is minimal disruption to the normal academic operations of its Main Campus in Bloemfontein whenever load shedding occurs.

The plan includes alternative arrangements for certain lectures that fall within the load-shedding schedule provided by Centlec, the emergency power generation for certain lecture halls and buildings, as well as the functioning of the UFS Sasol Library. This is in addition to emergency power equipment that has already been ordered for the larger lecture-hall complexes.

Fortunately, the Qwaqwa Campus has adequate emergency power generation capacity. The situation on the Vista Campus in Bloemfontein is being monitored, but the same guidelines will apply as on the Main Campus.

On the Main Campus in Bloemfontein the following alternative arrangements regarding the timetable for evening classes will come into effect when load shedding occurs:

  • An alternative module and venue timetable has been compiled so that classes that cannot take place on weekdays as a result of load shedding can be accommodated on Fridays and Saturdays.
  • Classes that are presented in the timeslot 18:10 to 21:00 on Thursdays are alternatively accommodated in the same venues at the same times on a Friday.
  • Classes that take place in the timeslot 20:10 to 22:00 on Wednesdays are alternatively accommodated in the timeslot 08:10 to 12:00 on Saturdays, in a few cases in different venues from those scheduled initially.
  • After consultation with students, lecturers will decide whether the alternative timetable will apply when load shedding does indeed occur or whether the alternative timetable will be a permanent arrangement.

Some other steps that have been taken regarding the functioning of lecture halls include:

  • The design and installation of emergency power equipment in all the large lecture-hall complexes within the next few months. This includes the Examination Centre, Flippie Groenewoud Building, the Stabilis and Genmin lecture halls.
  • The ordering of a larger generator for the Agriculture Building to simultaneously provide essential research equipment such as refrigerators, ovens and glasshouses with emergency power.
  • An investigation into the optimal utilisation of present emergency power installations.
    The purchasing of loose standing equipment such as battery lights, uninterruptible power supplies, loose-standing generators, etc.

The UFS Sasol Library will continue as normal as far as possible though there may be some minor changes as a result of load shedding. The library has an emergency generator that will be used in the event of load shedding to allow students and other users to exit the library. If load shedding occurs during daylight hours, the library will remain open with limited services. If the load shedding occurs after 6 pm (18:00), all users will be allowed to exit and the library will remain closed until the next day.

A comprehensive investigation into the university’s preparedness for and management of long term power interruptions is also receiving attention.

More information on the contingency plan for load shedding can be obtained from the UFS website at www.ufs.ac.za/loadshedding.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
13 February 2008


 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept