Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 October 2022 | Story Prof Johan van Niekerk, Dr Ismari van der Merwe, and Ms Elzmarie Oosthuizen | Photo Supplied
Sustainable food
World Food Day is celebrated annually on 16 October to promote global awareness and action to uplift those who suffer from hunger and to highlight the need to ensure access to healthy diets for all.

Opinion article by Prof Johan van Niekerk, Dr Ismari van der Merwe, and Ms Elzmarie Oosthuizen, Department of Sustainable Food Systems and Development, University of the Free State.



World Food Day is celebrated annually on 16 October to promote global awareness and action to uplift those who suffer from hunger and to highlight the need to ensure access to healthy diets for all. However, in 2022 we are faced with an ongoing pandemic, conflict, global warming, rising prices, and international tensions. All these factors are affecting global food security. Educators have an enormous task to help students develop skills to help build a sustainable world where everyone has regular access to nutritious food. 

Although we have progressed towards building a better world, many people have been left behind – people who cannot benefit from human development, innovation, or economic growth. Millions of people worldwide cannot afford a healthy diet, putting them at high risk of food insecurity and malnutrition. But ending hunger is not only about supply. Enough food is produced today to feed everyone on the planet. The problem is access and availability of nutritious food. People worldwide are suffering from the domino effects of challenges that know no borders.

Students have insufficient balance for food

South Africa has seen a significant expansion of student enrolment in the higher education system, with nearly one million students attending one of the 26 public universities. The number of students in South Africa's higher education system is far below other middle-income developing countries. Therefore, the government aims to increase university enrolment to 1,5 million by 2030. However, the cost of attending university greatly exceeds the financial means of most students. 
Students must divide their budget between rent, tuition, utilities, and the remaining insufficient balance for food, which ultimately increases their food insecurity risk.
Moreover, the transition of school learners to university students is more complicated than foreseen since lifestyle changes have health implications, where the excitement is combined with stress from pressure to perform well academically in a competitive environment. Research has found that first-year students are exceptionally prone to food insecurity. They have newfound independence and are still learning to cope with the milieu away from home. A study on the Bloemfontein Campus by the Department of Nutrition and Dietetics indicated that students experience considerable problems in managing their tasks, time, and finances. The challenge of reduced social support results in lengthy emotional and physical separation from family and friends, which influences standard eating patterns. The students have poor nutritional knowledge, limited earning potential, and a lack of budgeting skills and resources for healthy food preparation. Finally, sociocultural diversity is another factor to consider. It influences students' food patterns, while the total student population of the UFS, about 37 800 full-time students, reflects a rich sociocultural diversity. 

Intake of vegetables, fruit, and protein among students is minimal

When required to earn a degree, food insecurity represents a short period of time, but it can precipitate poor lifelong health behaviour and increased risks of chronic diseases. Prolonged exposure may contribute to the development of obesity. The research found food insecurity is related to poor mental health and academic performance. Students endorse increased rates of depression and anxiety, decreased concentration, and low concentration marks. It leads to lower academic achievement and undermines the goals of tertiary education. The importance of studying the aspects related to students' sustainable food consumption behaviour lies in the fact that, at this age, they begin to develop specific consumption patterns that will have long-term effects.

The average of current first-year students forms part of Generation Zoomers (ages 19-22 years). Generation Zoomers (Gen Z) grew up in specific circumstances, known as the first truly digital natives. They grew up living, working, and socialising with the internet and social media. This generation's economic circumstances are more constrained. The latter is partly due to the rise in university tuition fees. Gen Z forms part of diverse communities seen as networked young citizens, but growing social inequalities often limit their opportunities. This generation is labelled as the stay-at-home generation, with indoor and online socialising on the rise. 

During a study by the Department of Sustainable Food Systems and Development on the South Campus of the UFS (student population – ages 19-22 years), we found that the intake of vegetables, fruit, and protein among our students is minimal and will lead to deficiencies. At the same time, rice and pasta are part of their everyday diet. Money to buy these foods is still an immense problem. Students indicated that they would prefer healthy foods when they had the resources to afford it.

No Student Hungry initiative

Gender and student consumption patterns showed that breakfast consumption decreased, with male students consuming breakfast more regularly than females. The results indicated that students preferred soft drinks (energy) and water (available). They argued that the high consumption of fast food is due to its wide availability and accessibility in commercial and informal outlets. The informal vendors make fast food more available and accessible to low-budget student groups due to the lower food prices. The unhealthy consumption movement is driven by aggressive advertising practices and lower costs. 

Students consume more saturated fat snacks, refined carbohydrates, sweetened carbonated beverages, and diets that are short in polyunsaturated fatty acids (PUFAs) and fibres. Researchers indicated that these unhealthy diets and the increasingly sedentary lives of students could lead to non-communicable diseases such as type 2 diabetes mellitus and heart disease.

Currently, the department forms part of the NO STUDENT HUNGRY (NSH) initiative by establishing vegetable tunnels on campus. It remains an indispensable objective of the department, though, to increase the proportion of university students who receive information on unhealthy dietary patterns; however, nutrition knowledge has only moderate effects on students' attitudes and behaviours. Therefore, we use our Food Security modules as an effective strategy to educate our student community on sustainable food systems by ensuring skills development. Teaching contextual skills (e.g., how to plan and prepare nutritious meals within time and financial constraints) could address this unhealthy behaviour of the UFS students and work towards the sustainable development goal of NO HUNGER in 2030

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept