Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

Researcher at Qwaqwa Campus, Dr Aliza le Roux, selected as SAYAS member
2014-09-12

 

Dr Aliza le Roux

Dr Aliza le Roux, senior lecturer in the Department of Zoology and Entomology on the Qwaqwa Campus of the University of the Free State (UFS), was selected as a member of the 2014 South African Young Academy of Science (SAYAS). Dr Le Roux, a member of the Vice-Chancellor's Prestige Scholars Programme at the UFS, is also a South African National Research Foundation-rated (NRF) scientist (Y2) and the winner of the UFS Vice-Chancellor’s Excellence in Teaching Award in 2013.

She sees her selection to SAYAS as a unique opportunity to help change the face of science in South Africa. Dr Le Roux hopes to use her skills as project leader in social media, as well as her own learning experiences on a rural campus, to inspire especially ecological research in a country so rich in its own natural heritage.

The SAYAS selection committee was impressed by the high level of academic merit and depth of the nominations they received. “Your membership is critical in contributing to many of the vital activities and functioning of SAYAS, and we look forward to your active contributions to the further development and growth of the Young Academy,” said Prof Aldo Stroebel, Chair: SAYAS Selection Committee.

Prof Corli Witthuhn, Vice-Rector: Research at the UFS, said, “Aliza le Roux is an outstanding young scientist on our Qwaqwa Campus. She is not only an outstanding researcher but has also received prizes during the past year for her dedication to teaching. I am very excited about the young researchers on our Qwaqwa Campus with Aliza as one of the leaders, and I am looking forward to what else they can achieve in the next five years.”

In the past decade, Dr Le Roux focused her research on the cognitive and communicative skills of wild mammals in South Africa and Ethiopia. She spent four years as a postdoctoral research fellow at the University of Michigan, leading to ground-breaking research on the cognitive and communicative underpinnings of gelada monkey behaviour. Her current work encompasses an NRF-funded project on paternal care in bat-eared foxes, and experimental research on spatial cognition in wild samango monkeys. She is also involved in discussions with the Endangered Wildlife Trust to research the mitigation of road-kill incidents in South Africa.

Dr Le Roux hopes to combine cognitive ecology with more applied conservation questions in order to raise the profile of behavioural ecology as a discipline. She believes strongly in involving the public with scientific research, and has blogged for Nature Magazine on her adventures as field biologist. Her work has since found its way into numerous websites, magazine and newspaper articles and she has been interviewed on radio and BBC World.

Dr Le Roux will be inaugurated as SAYAS member on 14 October 2014.

Dr Marieka Gryzenhout from the Department of Plant Sciences is also a member of SAYAS.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept