Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 September 2022 | Story Valentino Ndaba | Photo UFS Photo Gallery
UFS Protection Services
The science of safety reinforces practical and collaborative efforts aimed at creating a secure campus environment.

While we might not have it down to a science just yet, safety is something that the University of the Free State (UFS) is constantly working towards improving. As it stands, various preventative measures exist across our three campuses. They say “Prevention is better than cure” – and that is exactly what the science of safety is all about.

What is the university doing to prevent crime? 

There are a few measures put in place by the Department of Protection Services, as its core mandate involves working around the clock to address the state of safety and security for staff and students. Some of these measures include:
• CCTV cameras monitoring campuses on a 24/7 basis.
• Panic buttons mounted on red poles which are fitted with cameras linked to the Control Room.
• Daily visible vehicle and foot patrols conducted by security personnel. 
• Security infrastructure such as turnstiles and surveillance cameras installed on all residence entrances.
• Security officers deployed around residences at night.
• Closely collaborating with Housing and Residence Affairs to find ways of creating, maintaining, and improving off-campus student safety.
• Investigating Officer on a 24/7 standby who is in direct contact with the South African Police Service (SAPS) Investigation Unit.
• Security and SAPS vehicles deployed at identified hotspots.
• Security patrols by contracted armed response security companies conducted in areas such as Brandwag, Willows, and Universitas in Bloemfontein, and surrounding areas at the Qwaqwa and South Campuses.

Safety is a shared responsibility

“In as much as Protection Services has duties and responsibilities in ensuring the safety of staff and students, the UFS community also needs to support and provide assistance to the department,” said Cobus van Jaarsveld, the department’s Section Head: Threat Detection, Investigations, and Liaison. 

You can play a role in ensuring that the UFS becomes an increasingly safe environment by:

• Immediately reporting any suspicious activity, item, person, or vehicle to the Department of Protection Services. 
• Acting responsibly to minimise your vulnerability to criminal activities.
• Familiarising yourself and complying with the UFS Security Policy, Protest Management Policy, and other security guidelines, standards, procedures, and protocols. 
• Following instructions issued by an authorised person for safety and security reasons.
• Cooperating with investigation processes that are in the interest of justice.
• Treating university property with the utmost care and avoiding exposing it to criminal activities, as well as reporting such activities. 

Creating a safe space for all

From identifying safety needs to tackling security issues head-on, the Department of Protection Services strives to reduce the risk of all kinds of crimes through the science of safety. The department continuously responds to the call to serve and protect in the following ways:

• Identifying and assessing risks and threats that have an impact on the safety and security of the UFS staff, students, and property.
• Enforcing access control.
• Investigating any reported incidents, providing investigation reports, and also issuing early-warning reports.
• Responding to emergencies reported on campuses. 
• Advising UFS management on all aspects of security.
• Initiating programmes and projects to enhance security awareness among UFS staff, students, visitors, and contractors.
• Providing support to students living in off-campus residences through contracted armed response that responds to emergencies and conducts patrols.
• Arranging counselling for victims of crime where necessary.
• Coordinating security services for on-campus events to ensure a safe and secure environment.

Contact Protection Services:
Bloemfontein Campus: +27 51 401 2911 or  +27 51 401 2634
Qwaqwa Campus: + 27 58 718 5460

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept