Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 September 2022 | Story André Damons | Photo André Damons
Dr Osayande Evbuomwan, Prof Willy Vangu and Dr Gerrit Engelbrecht
Dr Osayande Evbuomwan, nuclear medicine specialist and Senior Lecturer, left, and Dr Gerrit Engelbrecht, Clinical Head of the Department of Nuclear Medicine at the UFS, right, with Prof Willy Vangu, Chief Specialist and Head of Nuclear Medicine at the University of the Witwatersrand, after his lecture.

There is no doubt that an institution like the University of the Free State (UFS), with its calibre and pedigree, needs a PET/CT machine (medical-imaging device that simultaneously and clearly reveals both anatomical details and metabolic processes within the body), particular in oncology, in improving the management of patients. 

This is according to Prof Willy Vangu, Chief Specialist and Head of Nuclear Medicine at the University of the Witwatersrand, who was a guest lecturer on 8 September 2022 at the Department of Nuclear Medicine at the UFS.

Positron emission tomography (PET) is a type of nuclear medicine imaging modality that measures the metabolic activity of the cells of body tissues. PET imaging is useful in the evaluation of patients with neurological, cardiac, infection, inflammation, and most importantly oncological conditions. Through its ability to detect metabolic changes very early, it can detect disease conditions that might not be easily detected on other forms of anatomical imaging.

Role of PET/CT in different clinical scenarios

In his lecture, Prof Vangu talked about the role of PET/CT in different clinical scenarios. By giving practical examples, he explained the role of PET/CT in different aspects of clinical medicine, including brain imaging for dementia, movement disorder and cerebrovascular reserve. 

“Looking at dementia, we will focus on one of diseases that is today becoming a major source of health concern, Alzheimer's disease. The latest Alzheimer's report that was published in 2018 stated that there are 50 million individuals currently suffering from Alzheimer's. They forecast that in 30 years we are going to have more than 150 million people suffering from this disease. PET/CT imaging can identify very early the typical patterns associated with all the different types of dementias, including Alzheimer's disease…”

For cardiac application, Prof Vangu said there are so many indications for PET/CT in cardiac imaging. One of the most important is the assessment of myocardial viability, in patients who have suffered from cardiomyopathy due to ischemic heart disease. PET/CT offers a noninvasive method of identifying viable myocardium that would benefit from revascularisation, with a very high diagnostic accuracy. 

Prof Vangu, who is also the head of nuclear medicine at the Charlotte Maxeke Johannesburg Academic and Chris Hani Baragwanath hospitals as well as head of the department for radiation sciences at the University of the Witwatersrand, said PET has been around for many years and is not something new. However, in clinical practice, PET imaging became significant with a breakthrough that occurred with the production of the glucose analogue tracer, 18F-fluorodeoxyglucose (FDG). This tracer in PET/CT imaging has revolutionised the management of cancer patients for the oncologist. It offers the ability of more accurate cancer staging, assessment of treatment response, assessment of disease recurrence and in some situations, surveillance. It has the ability to predict early which cancer patients will benefit from a particular drug, thereby giving the oncologist an idea on either to de-escalate treatment or change to a second line regimen very early on in the management. 

PET-CT scan imaging machine

An internet example of an image taken by a PET/CT machine. Photo for illustration: A PET/CT Imaging machine.


PET/CT came onto the market only in the year 2001, when it was launched for the first time by David Townsend (a physicist) and Ronald Nutt (electrical engineer). As at today, almost every institution in the country has at least one PET/CT machine.


“Looking at clinical applications, which is really the crux of the lecture today, there are so many clinical applications to talk about. You need a full week of a PET/CT symposium to go through all of them (and) maybe that might not even be enough. We can at least from this talk have an idea on how PET/CT can be applied in clinical medicine,” said Prof Vangu.

No other road for the university but to get a PET/CT machine

He also showed the impact and results that PET/CT imaging had in the management of infection and inflammation including TB. He said the role of PET/CT in TB is for monitoring of treatment, identification of extrapulmonary TB and prognosis. 

In concluding his lecture, he said there is no other road for the university but to get a PET/CT machine. “There is no argument about it. The institution needs it to improve the management of patients, especially the oncology and cardiology patients. Confidently making the decision on which patients to treat, how to treat them, identifying and evaluating their true response to therapy requires a PET/CT machine.

“I am happy to hear that the policy- and decisions-makers in the province and the university are looking forward to having a PET/CT machine,” he said later. 

Dr Osayande Evbuomwan, nuclear medicine specialist and Senior Lecturer, and Dr Gerrit Engelbrecht, Clinical Head of the Department of Nuclear Medicine at the UFS, are both looking forward of having a PET/CT in the department because in addition to its use in clinical setting, it has a huge role to play in research and training postgraduate students, as PET/CT imaging makes up a huge chunk of the postgraduate training curriculum

News Archive

New schools, restructuring part of streamlined Faculty of Health Sciences
2017-10-12

 Description: Health Sciences staff 2 Tags: Faculty of Health Sciences, five-school structure, Prof Gert van Zyl, Pathology, Biomedical Sciences  

From the left, front are: Dr Jocelyn Naicker,
Prof Gert van Zyl, Prof Magda Mulder;
back from left: Prof Chris Viljoen,
Marlene Viljoen, Deputy Director: Faculty of Health Sciences;
Prof Nathaniel Mofolo; and Prof Santie van Vuuren.
Photo: Rulanzen Martin


Numerous developments, such as the creation of two new schools and one newly restructured School of Medicine in the Faculty of Health Sciences at the University of the Free State (UFS), will catapult this renowned faculty to even greater heights.

Five-school structure to increase access
 
A five-school structure was proposed at the annual Faculty Management retreat in July 2016. The previous three-school model included the Schools of Medicine, Nursing, and Allied Health Professions.

The current School of Medicine has been restructured and will henceforth be known as the School of Clinical Medicine. The Schools of Pathology and Biomedical Sciences have been added to the faculty. “So, three new schools were in fact created within the faculty,” said Prof Gert van Zyl, Dean of the faculty.   

“There was also a request from the National Health Laboratory Services to group academics that is rendering services in pathology into a new School of Pathology.” This is what motivated the faculty management to create two new schools.

Esteemed academics appointed 

With the creation of the new schools, there were also new appointments within the Faculty of Health Sciences. Dr Jocelyn Naicker has been appointed as the new part-time Head of the School of Pathology, Prof Chris Viljoen was appointed as the part-time Head of the School of Biomedical Sciences, and Prof Nathaniel Mofolo as the new Head of the School of Clinical Medicine. Prof Santie van Vuuren remains Head of the School of Allied Health Professions, and Prof Magda Mulder as the head of the School of Nursing. 

Research outputs to remain as usual
The addition of the new schools will not impact research output. “In the past, research was done across departmental boundaries between all the departments in the faculty,” Prof Van Zyl said. The advantages of adding two additional schools are that the workload will be distributed among the five schools. The heads of schools will work within their respective disciplines and related areas, and will eliminate the duplication of administrative functions.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept