Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 April 2023 | Story Leonie Bolleurs | Photo Supplied
Striving to make a difference in the field of biodiversity conservation, Dr Katlego Mashiane decided to pursue a PhD in Geography, focusing on the spatial modelling of grassland diversity and nutrients in subalpine environments. He received his PhD during the recent April graduation ceremonies on the Qwaqwa Campus.

In the small village of Ga-Mabotia about 25 km outside of Polokwane, Dr Katlego Mashiane grew up, surrounded by rocky mountains characterised by boulder outcrops, where he interacted with nature from an early age. 

He recently obtained his PhD, majoring in Geography, from the University of the Free State (UFS), which was conferred on him during the April graduation ceremonies that took place on the UFS Qwaqwa Campus. The title of his dissertation is Grass nutrients estimation as an Indicator of rangeland quality using satellite remote.

Predicting the presence of biodiversity and nutrients in an area

Based on the principle that diverse grasslands tend to perform better, environmental changes threaten the resilience and services these grassland ecosystems provide. The study examined how many different types of plants and animals can be found at a particular place to enhance our understanding of the ecosystem’s value to humans, and that biodiversity loss will reduce these ecosystem services. Focusing on spatial modelling of grassland diversity, Dr Mashiane specifically investigated the influence of topography and remotely sensed satellite data on species richness and diversity in subalpine environments, and how they are affected by the availability of grass species. To determine this, he used a random forest machine-learning algorithm to find the best information in the data that could be used to estimate the levels of species richness, diversity, and nitrogen in a protected national conservation park. 

His study discovered that some data types – such as the near-infrared variable and certain vegetation data (EVI and SAVI) – were especially useful for determining the number and variety of species in a certain area. With this information, scientists can create models that predict the presence of different types of biodiversity and nutrients in an area.

Playing a key role in protecting our natural assets

Equipped with this knowledge, one will be able to understand how to protect and preserve different types of biodiversity and promote the nutritional value of both plants and animals in the environment. “Land managers could use this information for conservation strategies,” states Dr Mashiane, who decided to pursue this study because he was curious about how environmental changes will affect species.

“Grasslands provide important ecosystem services underpinning human well-being, and therefore warrant our protection; I would like to play a role in protecting our natural assets and contribute to understanding our biomes, especially in the context of global change,” he says.

In the next five years, Dr Mashiane plans to pursue further research and mentor other students in his field of study.

News Archive

Africa's Black Rhino conservation strategy must change
2017-07-10

 Description: Black Rhino Tags: conservation strategy, black rhino, Nature Scientific Reports, National Zoological Gardens of South Africa, extinction, decline in genetic diversity, Prof Antoinette Kotze, Research and Scientific Services, Dr Desire Dalton 

The black rhino is on the brink of extinction. The study that was 
published in the Nature Scientific Reports reveals that the
species has lost an astonishing 69% of its genetic variation. 
Photo: iStock

The conservation strategy of the black rhino in Africa needs to change in order to protect the species from extinction, a group of international researchers has found. The study that was published in the Nature Scientific Reports reveals that the species has lost an astonishing 69% of its genetic variation. 

South African researchers took part 

The researchers, which included local researchers from the National Zoological Gardens of South Africa (NZG), have highlighted the fact that this means the black rhino is on the brink of extinction. "We have found that there is a decline in genetic diversity, with 44 of 64 genetic lineages no longer existing," said Prof Antoinette Kotze, the Manager of Research and Scientific Services at the Zoo in Pretoria. She is also affiliate Professor in the Department of Genetics at the University of the Free State and has been involved in rhino research in South Africa since the early 2000s.  

DNA from museums and the wild 
The study compared DNA from specimens in museums around the world, which originated in the different regions of Africa, to the DNA of live wild animals. The DNA was extracted from the skin of museum specimen and from tissue and faecal samples from animals in the wild. The research used the mitochondrial genome.

"The rhino poaching ‘pandemic’
needs to be defeated, because
it puts further strain on the genetic
diversity of the black rhino.”


Ability to adapt 
Dr Desire Dalton, one of the collaborators in the paper and a senior researcher at the NZG, said the loss of genetic diversity may compromise the rhinos’ ability to adapt to climate change. The study further underlined that two distinct populations now exists on either side of the Zambezi River. Dr Dalton said these definite populations need to be managed separately in order to conserve their genetic diversity. The study found that although the data suggests that the future is bleak for the black rhinoceros, the researchers did identify populations of priority for conservation, which might offer a better chance of preventing the species from total extinction. However, it stressed that the rhino poaching ‘pandemic’ needs to be defeated, because it puts further strain on the genetic diversity of the black rhino. 

Extinct in many African countries 
The research report further said that black rhino had been hunted and poached to extinction in many parts of Africa, such as Nigeria, Chad, Cameroon, Sudan, and Ethiopia. These rhino are now only found in five African countries. They are Tanzania, Zimbabwe, Kenya, Namibia, and South Africa, where the majority of the animals can be found. 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept