Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 April 2023 | Story Leonie Bolleurs | Photo Supplied
Dr Katlego Mashiane
Striving to make a difference in the field of biodiversity conservation, Dr Katlego Mashiane decided to pursue a PhD in Geography, focusing on the spatial modelling of grassland diversity and nutrients in subalpine environments. He received his PhD during the recent April graduation ceremonies on the Qwaqwa Campus.

In the small village of Ga-Mabotia about 25 km outside of Polokwane, Dr Katlego Mashiane grew up, surrounded by rocky mountains characterised by boulder outcrops, where he interacted with nature from an early age. 

He recently obtained his PhD, majoring in Geography, from the University of the Free State (UFS), which was conferred on him during the April graduation ceremonies that took place on the UFS Qwaqwa Campus. The title of his dissertation is Grass nutrients estimation as an Indicator of rangeland quality using satellite remote.

Predicting the presence of biodiversity and nutrients in an area

Based on the principle that diverse grasslands tend to perform better, environmental changes threaten the resilience and services these grassland ecosystems provide. The study examined how many different types of plants and animals can be found at a particular place to enhance our understanding of the ecosystem’s value to humans, and that biodiversity loss will reduce these ecosystem services. Focusing on spatial modelling of grassland diversity, Dr Mashiane specifically investigated the influence of topography and remotely sensed satellite data on species richness and diversity in subalpine environments, and how they are affected by the availability of grass species. To determine this, he used a random forest machine-learning algorithm to find the best information in the data that could be used to estimate the levels of species richness, diversity, and nitrogen in a protected national conservation park. 

His study discovered that some data types – such as the near-infrared variable and certain vegetation data (EVI and SAVI) – were especially useful for determining the number and variety of species in a certain area. With this information, scientists can create models that predict the presence of different types of biodiversity and nutrients in an area.

Playing a key role in protecting our natural assets

Equipped with this knowledge, one will be able to understand how to protect and preserve different types of biodiversity and promote the nutritional value of both plants and animals in the environment. “Land managers could use this information for conservation strategies,” states Dr Mashiane, who decided to pursue this study because he was curious about how environmental changes will affect species.

“Grasslands provide important ecosystem services underpinning human well-being, and therefore warrant our protection; I would like to play a role in protecting our natural assets and contribute to understanding our biomes, especially in the context of global change,” he says.

In the next five years, Dr Mashiane plans to pursue further research and mentor other students in his field of study.

News Archive

Double achievement for Prof. Paul Grobler
2012-04-25

 

Prof. Paul Grobler
Photo: Supplied
25 April 2012

Early this year, two journal editions appearing almost simultaneously in Europe featured cover photographs based on papers by Prof. Paul Grobler of the Department of Genetics and his collaborators.

These papers stem from collaborations with Prof. Gunther Hartl at the University of Kiel (Germany) and Dr Frank Zachos from the Natural History Museum in Vienna (Austria). Both papers cover aspects of the genetics of southern African antelope species.
 
The first paper appeared in the Journal of Zoological Systematics and Evolutionary Research” (from the Wiley-Blackwell group). This was titled “Genetic structure of the common impala (Aepyceros melampus melampus) in South Africa: phylogeography and implications for conservation”.
 
In this paper, the team analysed impala from various localities in South Africa to determine the relationship between distribution and genetic structure. The results suggest a clear relationship between genetic characteristics and habitat features that regulate gene flow.
 
The second appeared in the journal Mammalian Biology (from the Elsevier group), with the title “Genetic analysis of southern African gemsbok (Oryx gazella), reveals high variability, distinct lineages and strong divergence from the East African Oryx beisa”.
 
Here, the researchers looked at various aspects of the genetics and classification of gemsbok. Among the notable findings is that gemsbok populations on the game farms studied are less inbred than previously predicted.
 
Proffs. Grobler and Hartl initiated these projects on gemsbok and impala, with sub-sections of the research later completed as M.Sc. projects by students from both South Africa and Germany.
 
Prof. Grobler has been involved with aspects of the population genetics of various mammal species since the early 1990s, and continued with this line of research after joining the UFS in 2006. Current projects in this field include work on wildebeest, vervet monkeys and white rhinoceroses.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept