Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 April 2023 | Story Leonie Bolleurs | Photo Supplied
Dr Katlego Mashiane
Striving to make a difference in the field of biodiversity conservation, Dr Katlego Mashiane decided to pursue a PhD in Geography, focusing on the spatial modelling of grassland diversity and nutrients in subalpine environments. He received his PhD during the recent April graduation ceremonies on the Qwaqwa Campus.

In the small village of Ga-Mabotia about 25 km outside of Polokwane, Dr Katlego Mashiane grew up, surrounded by rocky mountains characterised by boulder outcrops, where he interacted with nature from an early age. 

He recently obtained his PhD, majoring in Geography, from the University of the Free State (UFS), which was conferred on him during the April graduation ceremonies that took place on the UFS Qwaqwa Campus. The title of his dissertation is Grass nutrients estimation as an Indicator of rangeland quality using satellite remote.

Predicting the presence of biodiversity and nutrients in an area

Based on the principle that diverse grasslands tend to perform better, environmental changes threaten the resilience and services these grassland ecosystems provide. The study examined how many different types of plants and animals can be found at a particular place to enhance our understanding of the ecosystem’s value to humans, and that biodiversity loss will reduce these ecosystem services. Focusing on spatial modelling of grassland diversity, Dr Mashiane specifically investigated the influence of topography and remotely sensed satellite data on species richness and diversity in subalpine environments, and how they are affected by the availability of grass species. To determine this, he used a random forest machine-learning algorithm to find the best information in the data that could be used to estimate the levels of species richness, diversity, and nitrogen in a protected national conservation park. 

His study discovered that some data types – such as the near-infrared variable and certain vegetation data (EVI and SAVI) – were especially useful for determining the number and variety of species in a certain area. With this information, scientists can create models that predict the presence of different types of biodiversity and nutrients in an area.

Playing a key role in protecting our natural assets

Equipped with this knowledge, one will be able to understand how to protect and preserve different types of biodiversity and promote the nutritional value of both plants and animals in the environment. “Land managers could use this information for conservation strategies,” states Dr Mashiane, who decided to pursue this study because he was curious about how environmental changes will affect species.

“Grasslands provide important ecosystem services underpinning human well-being, and therefore warrant our protection; I would like to play a role in protecting our natural assets and contribute to understanding our biomes, especially in the context of global change,” he says.

In the next five years, Dr Mashiane plans to pursue further research and mentor other students in his field of study.

News Archive

Water research aids decision making on national level
2015-05-25

Photo: Leonie Bolleurs

With water being a valuable and scarce resource in the central regions of South Africa, it is no wonder that the UFS has large interdisciplinary research projects focusing on the conservation of water, as well as the sustainable use of this essential element.

The hydropedology research of Prof Pieter le Roux from the Department of Soil, Crop and Climate Sciences and his team at the UFS focuses on Blue water. Blue water is of critical importance to global health as it is cleared by the soil and stored underground for slow release in marshes, rivers, and deep groundwater. The release of this water bridges the droughts between showers and rain seasons and can stretch over several months and even years. The principles established by Prof Le Roux, now finds application in ecohydrology, urban hydrology, forestry hydrology, and hydrological modelling.

The Department of Agricultural Economics is busy with three research projects for the Water Research Commission of South Africa, with an estimated total budget of R7 million. Prof Henry Jordaan from this department is conducting research on the water footprint of selected field and forage crops, and the food products derived from these crops. The aim is to assess the impact of producing the food products on the scarce freshwater resource to inform policy makers, water managers and water users towards the sustainable use of freshwater for food production.

With his research, Prof Bennie Grové, also from this department, focuses on economically optimising water and electricity use in irrigated agriculture. The first project aims to optimise the adoption of technology for irrigation practices and irrigation system should water allocations to farmers were to be decreased in a catchment because of insufficient freshwater supplies to meet the increasing demand due to the requirements of population growth, economic development and the environment.

In another project, Prof Grové aims to economically evaluate alternative electricity management strategies such as optimally designed irrigation systems and the adoption of new technology to mitigate the substantial increase in electricity costs that puts the profitability of irrigation farming under severe pressure.

Marinda Avenant and her team in the Centre for Environmental Management (CEM), has been involved in the biomonitoring of the Free State rivers, including the Caledon, Modder Riet and part of the Orange River, since 1999. Researchers from the CEM regularly measures the present state of the water quality, algae, riparian vegetation, macro-invertebrates and fish communities in these rivers in order to detect degradation in ecosystem integrity (health).

The CEM has recently completed a project where an interactive vulnerability map and screening-level monitoring protocol for assessing the potential environmental impact of unconventional gas mining by means of hydraulic fracturing was developed. These tools will aid decision making at national level by providing information on the environment’s vulnerability to unconventional gas mining.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept