Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 April 2023 | Story Leonie Bolleurs | Photo Supplied
Dr Katlego Mashiane
Striving to make a difference in the field of biodiversity conservation, Dr Katlego Mashiane decided to pursue a PhD in Geography, focusing on the spatial modelling of grassland diversity and nutrients in subalpine environments. He received his PhD during the recent April graduation ceremonies on the Qwaqwa Campus.

In the small village of Ga-Mabotia about 25 km outside of Polokwane, Dr Katlego Mashiane grew up, surrounded by rocky mountains characterised by boulder outcrops, where he interacted with nature from an early age. 

He recently obtained his PhD, majoring in Geography, from the University of the Free State (UFS), which was conferred on him during the April graduation ceremonies that took place on the UFS Qwaqwa Campus. The title of his dissertation is Grass nutrients estimation as an Indicator of rangeland quality using satellite remote.

Predicting the presence of biodiversity and nutrients in an area

Based on the principle that diverse grasslands tend to perform better, environmental changes threaten the resilience and services these grassland ecosystems provide. The study examined how many different types of plants and animals can be found at a particular place to enhance our understanding of the ecosystem’s value to humans, and that biodiversity loss will reduce these ecosystem services. Focusing on spatial modelling of grassland diversity, Dr Mashiane specifically investigated the influence of topography and remotely sensed satellite data on species richness and diversity in subalpine environments, and how they are affected by the availability of grass species. To determine this, he used a random forest machine-learning algorithm to find the best information in the data that could be used to estimate the levels of species richness, diversity, and nitrogen in a protected national conservation park. 

His study discovered that some data types – such as the near-infrared variable and certain vegetation data (EVI and SAVI) – were especially useful for determining the number and variety of species in a certain area. With this information, scientists can create models that predict the presence of different types of biodiversity and nutrients in an area.

Playing a key role in protecting our natural assets

Equipped with this knowledge, one will be able to understand how to protect and preserve different types of biodiversity and promote the nutritional value of both plants and animals in the environment. “Land managers could use this information for conservation strategies,” states Dr Mashiane, who decided to pursue this study because he was curious about how environmental changes will affect species.

“Grasslands provide important ecosystem services underpinning human well-being, and therefore warrant our protection; I would like to play a role in protecting our natural assets and contribute to understanding our biomes, especially in the context of global change,” he says.

In the next five years, Dr Mashiane plans to pursue further research and mentor other students in his field of study.

News Archive

Consumer Science at the UFS awards three PhDs
2015-07-08

Dr Gloria Seiphetlheng, Dr Natasha Cronje, Dr Ismari van der Merwe and Prof Hester Steyn.
Photo: Leonie Bolleurs

For the first time in its history, the Department of Consumer Science in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) earned three doctorates at one graduation ceremony this year. This week three PhDs were awarded to Ismari van der Merwe, Natasha Cronje, and Gloria Seiphetlheng at the Winter Graduation that took place on the Bloemfontein Campus.

Electrochemically-activated water is widely used in the food and other industries, due to its excellent environment-friendly properties. However, it is not used in the textile industry yet, because too little research has been done to determine the possible positive and negative impact it may have on textiles.

With the thesis, The evaluation of catholyte treatment on the colour and tensile properties of dyed cotton, polyester and polyamide 6,6 fabrics,  Dr Cronje, a lecturer in the UFS’s Department of Consumer Science, and Dr Seiphetlheng from the Serowe College of Education in Botswana,  provided major new information with the thesis, Anolyte as an alternative bleach for cotton fabrics. This information is essential when considering the application of catholytes and anolytes in the textile industry.

Electrochemically-activated water divides water in catholytes and anolytes. The anolyte part is used as a disinfectant and bleach. It is not really suitable for domestic use, as it can cause colour loss in coloured textile products. However, it can be used in the hospitality industry where white sheets, towels, etc., are used and washed on a regular basis.

The catholyte part of the water has properties similar to washing powder. It can also be used in the textile industry as washing liquid.

According to Prof Hester Steyn, Head of the Department of Consumer Science and supervisor of all three PhD candidates, this electrochemically-activated water is also very eco-friendly. “It has a short shelf life. If the electrochemically-activated water isn’t utilised, it returns to normal water that wouldn’t harm the environment. No water is therefore lost, and no waste products are released that would contaminate the environment,” she says.

Dr Van der Merwe’s research focused on Degumming Gonometa postica cocoons using environmentally conscious methods. A lecturer in the Department of Consumer Science, she demonstrated that simple and environmentally-friendly methods can be used with great success to procure wild silk from the cocoons of the Gonometa postica worms living in the camel thorn trees found in the Northern Cape and Namibia.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept