Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2023 | Story Leonie Bolleurs | Photo Leonie Bolleurs
reusable sanitary pads
A team of researchers from the UFS is part of a project to invent a reusable sanitary pad that is safe, hygienic, comfortable, easy to use, and friendly to the environment. From left are: Prof Katinka de Wet, Dr Marietjie Schutte-Smith, Prof Deon Visser, and Prof Lizette Erasmus.

A new reusable sanitary pad (RSP) will bring relief to many women during their menstrual cycle.

Dr Marietjie Schutte-Smith, Senior Lecturer in the University of the Free State (UFS) Department of Chemistry, together with Prof Deon Visser, Head of the Department of Chemistry, and Prof Lizette Erasmus, Associate Professor in the same department, are leading a diverse team that decided 18 months ago to do something about the challenge of not having access to conventional sanitary ware and water due to poverty and infrastructure challenges – a challenge many young women in South Africa face every month.

The team included Prof Katinka de Wet, Associate Professor in the Department of Sociology, in this process in an effort to gain a better understanding of the current perceptions, experiences, and preferences of those who will ultimately use these sanitary products. 

“We wanted to do research that has a direct and tangible impact on our immediate society,” says Prof Erasmus. 

New technology

The research team turned their focus to reusable sanitary pads (RSPs), specifically the invention of a product that can be cleaned without being exposed to direct sunlight. 

Dr Schutte-Smith explains that most RSPs must be exposed to direct sunlight to dry and prevent bacterial growth. “Exposing RSPs to sunlight is challenging for users residing in densely populated areas, besides the fact that many people find the public display of sanitary products embarrassing.”

She believes a product that can be washed and left indoors to dry, one that has antibacterial and antimicrobial properties under normal light conditions, and with durable superabsorbent inner layers, could alleviate some of these challenges.

The team then started working on technology including nanoparticles (NPs) that affix to textiles and will kill germs and fungi when exposed to normal light. 

Prof Erasmus says, “Attaching NPs to materials is not a new concept, however, the use of nanoparticles that are activated by normal light conditions is new… Also, we have synthesised several absorbent materials using natural fibres and biopolymers as the main constituents. This is an ongoing process to enhance their absorbent properties and durability so that they can be included in our product.”
We wanted to do research that has a direct and tangible impact on our immediate society. – Prof Lizette Erasmus

She adds that when the RSPs are eventually discarded (after four to five years) they will break down in the environment and not contribute further to the plastic waste problem the world is facing. Most disposable sanitary pads (DSPs) are not environmentally friendly and take 500 to 800 years to decompose. 

Dr Schutte-Smith goes on to explain that the sanitary ware will be manufactured by sewing different layers together. “The outer lower layer will consist of a hydrophobic (fluid-repellent) layer to prevent leaking, and the inner layer will consist of the synthesised and biodegradable superabsorbent polymer (SAP).”

The product will be mixed into cotton and will be removable (for better cleaning). “It will also contain NPs that use natural indoor light to disinfect. The top layer also contains our nanotechnology and will relay fluids to the absorbent inner layer.”

Social implications

Besides the important work being done by chemists to incorporate technology that will ensure the product makes sense scientifically, it is also important that the experiences, perceptions, and ideas of end users are kept in mind. 

Prof De Wet says social scientists were included in the design and development of this product to ensure that the actual needs of the end users are taken into consideration. The idea is to collaborate with school learners and university students to get their feedback on the development and eventual use of these newly developed RSPs.

“The aim, therefore, is to sensitise menstruating individuals as to the possible personal advantages of using reusable sanitary pads, including that it is less expensive in the long run, thus eliminating the problem of access to quality and reliable sanitary ware. There could even be some potential health advantages to using such products, as current disposable products contain phthalates that have been shown to have adverse health effects on individuals,” she states.

Prof De Wet also points out the environmental benefits of using reusable sanitary products, and the importance of sensitising young people to the environmental costs of single-use plastic consumption, of which sanitary ware is a major contributor. “Environmental consciousness is part of the social side of the project, given the pressures globally on the human-induced impact on our planet, and its devastating consequences,” she says. “We want the science (chemistry) to have a real social impact in people’s lives individually, socially, and environmentally.”

Future steps

According to Prof Visser, the team already has a prototype in place, which now needs to be perfected through inputs from end users. They hope to have an industry partner within the next six months that will help to get this product on the market.  

The team of chemists worked hard to develop a product that will have the potential to change many lives for the better, allowing young girls and women to thrive in life. 

News Archive

Researcher takes home gold at international Famelab competition
2017-06-26

Description: Famelab competition Tags: Famelab competition

UFS researcher nabbed a top international award for
her ground-breaking metallurgical research in the UK.
Photo: Supplied

Recently, University of the Free State (UFS) Centre for Environmental Management master’s student, Tshiamo Legoale, was announced the FameLab International champion at the Cheltenham Science Festival in the United Kingdom. She is probing methods to use wheat as a gold hyper-accumulator – or, as she puts it, “grow gold from wheat”. The young researcher made South Africa proud by winning both the audience’s and the judges’ vote.

Coming back home a hero
“Winning was a surprise to me, because all 31 contestants had wonderful research. They all had really good presentations. I’m very grateful for all the support that I received from home. Social media showed me a lot of love and support. When I felt unconfident, they gave me ‘likes’ and that boosted my confidence a bit,” said Legoale about her win.

As South Africa celebrates Youth Month in June, Tshiamo represents hope for thousands of young South Africans to overcome difficult circumstances and follow careers in science.

The human impact is crucial, because Legoale’s win is not only scientific. It is also social and political. As a young female scientist in South Africa, she represented one of three African countries making it to the finals of FameLab, which has grown to one of the largest science communication competitions internationally.

With this in mind, Legoale says it may, in the end, be necessary to balance the needs of communities with the desire to increase yield. “Are we looking to make a fortune or are we looking to put food on the table?” she asks. “These are all things we consider when we conduct such research.”

World-class research from Africa
In South Africa, an estimated 17.7 million tons of gold is wasted. “All this gold was mined out previously, but tiny amounts remain in the dumps,” Legoale explains.

Her research focuses on the uses of wheat as a gold hyper-accumulator, which essentially means wheat plants are used to harvest gold from mine dumps. Simply put, the wheat is planted in the dumps, where enzymes found in the roots react with the gold and the plant absorbs it. The gold is then absorbed by every part of the plant, except the seeds, which means the next harvest can be used for food if need be.

“South Africa's world-champion young scientist, Tshiamo, represents all that is good about this country – brilliant, bright, and set for a fine future. I'm so proud that British Council SA, together with our partners SAASTA and Jive Media Africa, can help her along the way. Huge congratulations to her from all of us – it is a big win for Africa on the world stage,” said Colm McGivern, British Council South Africa Country Director.

The research represents a win on multiple levels. First, there are the obvious potential socio-economic benefits: food production, job creation, and phytomining is more economical than other contemporary mining methods.

Then there is safety. It is a more environmentally friendly practice than methods like heap leaching, carbon-in-leach or carbon-in-pulp. It is also safer for miners themselves, who will not be exposed to dangerous chemicals like mercury, which has been responsible for a great deal of toxicity in mine dumps. And it is safer for those living in the surrounds.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept