Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2023 | Story Leonie Bolleurs | Photo Leonie Bolleurs
reusable sanitary pads
A team of researchers from the UFS is part of a project to invent a reusable sanitary pad that is safe, hygienic, comfortable, easy to use, and friendly to the environment. From left are: Prof Katinka de Wet, Dr Marietjie Schutte-Smith, Prof Deon Visser, and Prof Lizette Erasmus.

A new reusable sanitary pad (RSP) will bring relief to many women during their menstrual cycle.

Dr Marietjie Schutte-Smith, Senior Lecturer in the University of the Free State (UFS) Department of Chemistry, together with Prof Deon Visser, Head of the Department of Chemistry, and Prof Lizette Erasmus, Associate Professor in the same department, are leading a diverse team that decided 18 months ago to do something about the challenge of not having access to conventional sanitary ware and water due to poverty and infrastructure challenges – a challenge many young women in South Africa face every month.

The team included Prof Katinka de Wet, Associate Professor in the Department of Sociology, in this process in an effort to gain a better understanding of the current perceptions, experiences, and preferences of those who will ultimately use these sanitary products. 

“We wanted to do research that has a direct and tangible impact on our immediate society,” says Prof Erasmus. 

New technology

The research team turned their focus to reusable sanitary pads (RSPs), specifically the invention of a product that can be cleaned without being exposed to direct sunlight. 

Dr Schutte-Smith explains that most RSPs must be exposed to direct sunlight to dry and prevent bacterial growth. “Exposing RSPs to sunlight is challenging for users residing in densely populated areas, besides the fact that many people find the public display of sanitary products embarrassing.”

She believes a product that can be washed and left indoors to dry, one that has antibacterial and antimicrobial properties under normal light conditions, and with durable superabsorbent inner layers, could alleviate some of these challenges.

The team then started working on technology including nanoparticles (NPs) that affix to textiles and will kill germs and fungi when exposed to normal light. 

Prof Erasmus says, “Attaching NPs to materials is not a new concept, however, the use of nanoparticles that are activated by normal light conditions is new… Also, we have synthesised several absorbent materials using natural fibres and biopolymers as the main constituents. This is an ongoing process to enhance their absorbent properties and durability so that they can be included in our product.”
We wanted to do research that has a direct and tangible impact on our immediate society. – Prof Lizette Erasmus

She adds that when the RSPs are eventually discarded (after four to five years) they will break down in the environment and not contribute further to the plastic waste problem the world is facing. Most disposable sanitary pads (DSPs) are not environmentally friendly and take 500 to 800 years to decompose. 

Dr Schutte-Smith goes on to explain that the sanitary ware will be manufactured by sewing different layers together. “The outer lower layer will consist of a hydrophobic (fluid-repellent) layer to prevent leaking, and the inner layer will consist of the synthesised and biodegradable superabsorbent polymer (SAP).”

The product will be mixed into cotton and will be removable (for better cleaning). “It will also contain NPs that use natural indoor light to disinfect. The top layer also contains our nanotechnology and will relay fluids to the absorbent inner layer.”

Social implications

Besides the important work being done by chemists to incorporate technology that will ensure the product makes sense scientifically, it is also important that the experiences, perceptions, and ideas of end users are kept in mind. 

Prof De Wet says social scientists were included in the design and development of this product to ensure that the actual needs of the end users are taken into consideration. The idea is to collaborate with school learners and university students to get their feedback on the development and eventual use of these newly developed RSPs.

“The aim, therefore, is to sensitise menstruating individuals as to the possible personal advantages of using reusable sanitary pads, including that it is less expensive in the long run, thus eliminating the problem of access to quality and reliable sanitary ware. There could even be some potential health advantages to using such products, as current disposable products contain phthalates that have been shown to have adverse health effects on individuals,” she states.

Prof De Wet also points out the environmental benefits of using reusable sanitary products, and the importance of sensitising young people to the environmental costs of single-use plastic consumption, of which sanitary ware is a major contributor. “Environmental consciousness is part of the social side of the project, given the pressures globally on the human-induced impact on our planet, and its devastating consequences,” she says. “We want the science (chemistry) to have a real social impact in people’s lives individually, socially, and environmentally.”

Future steps

According to Prof Visser, the team already has a prototype in place, which now needs to be perfected through inputs from end users. They hope to have an industry partner within the next six months that will help to get this product on the market.  

The team of chemists worked hard to develop a product that will have the potential to change many lives for the better, allowing young girls and women to thrive in life. 

News Archive

UFS cardiologists and surgeons give children a beating heart
2015-04-23

Photo: René-Jean van der Berg

A team from the University of the Free State School for Medicine work daily unremittingly to save the lives of young children who have been born with heart defects by carrying out highly specialised interventions and operations on them. These operations, which are nowadays performed more and more frequently by cardiologists from the UFS School of Medicine, place the UFS on a similar footing to world-class cardiology and cardio-thoracic units.

One of the children is seven-month-old Montsheng Ketso who recently underwent a major heart operation to keep the left ventricle of her heart going artificially.

Montsheng was born with a rare, serious defect of the coronary artery, preventing the left ventricle from receiving enough blood to pump to the rest of the body.

This means that the heart muscle can suffer damage because these children essentially experience a heart attack at a very young age.

In a healthy heart, the left ventricle receives oxygenated blood from the left atrium. Then the left ventricle pumps this oxygen-rich blood to the aorta whence it flows to the rest of the body. The heart muscle normally receives blood supply from the oxygenated aorta blood, which in this case cannot happen.

Photo: René-Jean van der Berg

“She was very ill. I thought my baby was going to die,” says Mrs Bonizele Ketso, Montsheng’s mother.

She says that Montsheng became sick early in February, and she thought initially it was a tight chest or a cold. After a doctor examined and treated her baby, Montsheng still remained constantly ill, so the doctor referred her to Prof Stephen Brown, paediatric cardiologist at the UFS and attached to Universitas Hospital.

Here, Prof Brown immediately got his skilled team together as quickly as possible to diagnose the condition in order to operate on Montsheng.

During the operation, the blood flow was restored, but since Montsheng’s heart muscle was seriously damaged, the heart was unable to contract at the end of the operation. Then she was coupled to a heart-lung machine to allow the heart to rest and give the heart muscle chance to recover. The entire team of technologists and the dedicated anaesthetist, Dr Edwin Turton, kept a vigil day and night for several days.

Prof Francis Smit, chief specialist at the UFS Department of Cardiothoracic Surgery, explains that without this operation Montsheng would not have been able to celebrate her first birthday.

“After the surgery, these children can reach adulthood without further operations. Within two to three months after the operation, she will have a normal active life, although for about six months she will still use medication. Thereafter, she will be tiptop and shortly learn to crawl and walk.”

Mrs Ketso is looking forward enormously to seeing her daughter stand up and take her first steps. A dream which she thought would never come true.    

“Write there that I really love these doctors.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept