Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2023 | Story Leonie Bolleurs | Photo Leonie Bolleurs
reusable sanitary pads
A team of researchers from the UFS is part of a project to invent a reusable sanitary pad that is safe, hygienic, comfortable, easy to use, and friendly to the environment. From left are: Prof Katinka de Wet, Dr Marietjie Schutte-Smith, Prof Deon Visser, and Prof Lizette Erasmus.

A new reusable sanitary pad (RSP) will bring relief to many women during their menstrual cycle.

Dr Marietjie Schutte-Smith, Senior Lecturer in the University of the Free State (UFS) Department of Chemistry, together with Prof Deon Visser, Head of the Department of Chemistry, and Prof Lizette Erasmus, Associate Professor in the same department, are leading a diverse team that decided 18 months ago to do something about the challenge of not having access to conventional sanitary ware and water due to poverty and infrastructure challenges – a challenge many young women in South Africa face every month.

The team included Prof Katinka de Wet, Associate Professor in the Department of Sociology, in this process in an effort to gain a better understanding of the current perceptions, experiences, and preferences of those who will ultimately use these sanitary products. 

“We wanted to do research that has a direct and tangible impact on our immediate society,” says Prof Erasmus. 

New technology

The research team turned their focus to reusable sanitary pads (RSPs), specifically the invention of a product that can be cleaned without being exposed to direct sunlight. 

Dr Schutte-Smith explains that most RSPs must be exposed to direct sunlight to dry and prevent bacterial growth. “Exposing RSPs to sunlight is challenging for users residing in densely populated areas, besides the fact that many people find the public display of sanitary products embarrassing.”

She believes a product that can be washed and left indoors to dry, one that has antibacterial and antimicrobial properties under normal light conditions, and with durable superabsorbent inner layers, could alleviate some of these challenges.

The team then started working on technology including nanoparticles (NPs) that affix to textiles and will kill germs and fungi when exposed to normal light. 

Prof Erasmus says, “Attaching NPs to materials is not a new concept, however, the use of nanoparticles that are activated by normal light conditions is new… Also, we have synthesised several absorbent materials using natural fibres and biopolymers as the main constituents. This is an ongoing process to enhance their absorbent properties and durability so that they can be included in our product.”
We wanted to do research that has a direct and tangible impact on our immediate society. – Prof Lizette Erasmus

She adds that when the RSPs are eventually discarded (after four to five years) they will break down in the environment and not contribute further to the plastic waste problem the world is facing. Most disposable sanitary pads (DSPs) are not environmentally friendly and take 500 to 800 years to decompose. 

Dr Schutte-Smith goes on to explain that the sanitary ware will be manufactured by sewing different layers together. “The outer lower layer will consist of a hydrophobic (fluid-repellent) layer to prevent leaking, and the inner layer will consist of the synthesised and biodegradable superabsorbent polymer (SAP).”

The product will be mixed into cotton and will be removable (for better cleaning). “It will also contain NPs that use natural indoor light to disinfect. The top layer also contains our nanotechnology and will relay fluids to the absorbent inner layer.”

Social implications

Besides the important work being done by chemists to incorporate technology that will ensure the product makes sense scientifically, it is also important that the experiences, perceptions, and ideas of end users are kept in mind. 

Prof De Wet says social scientists were included in the design and development of this product to ensure that the actual needs of the end users are taken into consideration. The idea is to collaborate with school learners and university students to get their feedback on the development and eventual use of these newly developed RSPs.

“The aim, therefore, is to sensitise menstruating individuals as to the possible personal advantages of using reusable sanitary pads, including that it is less expensive in the long run, thus eliminating the problem of access to quality and reliable sanitary ware. There could even be some potential health advantages to using such products, as current disposable products contain phthalates that have been shown to have adverse health effects on individuals,” she states.

Prof De Wet also points out the environmental benefits of using reusable sanitary products, and the importance of sensitising young people to the environmental costs of single-use plastic consumption, of which sanitary ware is a major contributor. “Environmental consciousness is part of the social side of the project, given the pressures globally on the human-induced impact on our planet, and its devastating consequences,” she says. “We want the science (chemistry) to have a real social impact in people’s lives individually, socially, and environmentally.”

Future steps

According to Prof Visser, the team already has a prototype in place, which now needs to be perfected through inputs from end users. They hope to have an industry partner within the next six months that will help to get this product on the market.  

The team of chemists worked hard to develop a product that will have the potential to change many lives for the better, allowing young girls and women to thrive in life. 

News Archive

New publication on groundwater remediation soon to be introduced
2017-05-05

Description: Prof Abdon Atangana groundwater remediation Tags: Prof Abdon Atangana groundwater remediation

A new book from Prof Abdon Atangana from
the UFS Institute for Groundwater Studies
proposes new techniques for groundwater
remediation, including guidelines on how chemical
companies can be positioned in any city to avoid
groundwater pollution.
Photo: Pixabay

A new publication, Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology, will be published later this year, on 1 November 2017. The author, Prof Abdon Atangana, from the Institute of Groundwater Studies at the University of the Free State, said the book proposes new techniques for groundwater remediation, including guidelines on how chemical companies can be positioned in any city to avoid groundwater pollution.

Focus of the book
Prof Atangana said researchers and practitioners interested in groundwater modelling and remediation from applied mathematical and geo-hydrology backgrounds, will benefit from reading this book.

According to Elsevier, the book provides a physical review of fractional operators, fractional variable order operators, and uncertain derivatives to groundwater flow and environmental remediation. It presents a formal set of mathematical equations for the description of groundwater flow and pollution problems using the concept of non-integer order derivative. Both advantages and disadvantages of models with fractional operators are discussed.

“Researchers and practitioners
interested in groundwater modelling
and remediation from applied
mathematician and geo-hydrology
backgrounds, will benefit from
reading this book.”

About the author
Prof Atangana specialises in applied mathematics, groundwater modelling, fractional calculus and their applications, methods for partial differential equations, methods for ordinary differential equations, iterations methods, asymptotic methods, perturbations methods, and numerical method for fractional differential equations, uncertainties analysis. He has participated in 18 international conferences, organised six special sections and symposiums in international conference in Europe, Africa, Asia and USA, and has been invited as plenary speaker in eight international conferences. He also serves as editor on 20 international journal of mathematics and applied mathematics and editor-in-chief of two international journals of applied mathematics.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept