Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 August 2023 | Story Andre Damons | Photo Andre Damons
Dr Kgomotso Moroka
Dr Kgomotso Moroka, Acting HOD: Cardiology in the UFS Faculty of Health Sciences, recently graduated from Maastricht University with a Diploma of Advanced Studies in Cardiac Arrhythmia Management (DAS-CAM).

A staff member from the University of the Free State (UFS) is hopeful her newly acquired skills and knowledge, following her graduation with a Diploma of Advanced Studies in Cardiac Arrhythmia Management (DAS-CAM) and completion of a electrophysiology fellowship, will contribute to the improvement of cardiovascular services in the Free State and Sub-Saharan Africa.

Dr Kgomotso Moroka, the Acting Head of Department (HOD) for Cardiology in the UFS Faculty of Health Sciences, recently graduated with a DAS-CAM in June 2023. This distinctive postgraduate programme is offered by Maastricht University in collaboration with the European Heart Rhythm Association and the European Society of Cardiology. This is a two-year programme and Dr Moroka was part of the third cohort which comprised 32 electrophysiologists selected from over 20 countries worldwide.

Her achievement places her as the sole   DAS-CAM graduate in Sub-Saharan Africa and the Free State region. 
Electrophysiology, which studies the electrical influences and patterns of the heart is vital for treating patients with abnormal heartbeats caused by irregularities in the heart’s electrical pathway, resulting in either unusually slow or fast heartbeats.

Seizing a valuable opportunity

Dr Moroka emphasises that currently, there is a lack of electrophysiology services provided in both the public and private sectors within the Free State. She therefore anticipates that her newly acquired skills and knowledge will play a pivotal role in enhancing and improving the cardiovascular services offered in the province. She is also optimistic about contributing to the establishment of a department dedicated to Electrophysiology Training. 

“I could not pass up the opportunity to engage with, learn and gain insights from seasoned world-class great minds of electrophysiology, who write the books we read and the very guidelines that we utilize in our daily practices. There was also an opportunity to be guided in research and the state-of-the-art cardiac clinical electrophysiology while also obtaining insights into how to develop a cardiac arrhythmia centre, biostatics, health economics, leadership skills and health technology assessment,” Dr Moroka explains regarding her motivation to enrol in the program. 

“It was a challenging and exciting program that allowed participants to engage with the world-renowned experts in electrophysiology not only on a professional but also personal level. This program served not only to educate participants on clinical cardiac electrophysiology but served to empower us to fulfil roles as future leaders in electrophysiology and in our day-to-day roles,” she continued.

Addressing the diverse burden of cardiac diseases

Dr Moroka believes that this qualification will significantly contribute to local efforts to establish and develop a much-needed unique service, thereby advancing her career development locally and on the international platform. This qualification enables her to expand her clinical research pursuits on multiple fronts.

Dr Moroka underscores the substantial burden of ischemic heart disease with the associated risk factors such as uncontrolled high blood pressure, diabetes, elevated cholesterol levels and smoking. “There is a measurable burden of heart failure and valvular heart disease. In addition, from the research that we hope to embark upon, we hope to clearly define the burden of rhythm problems such as atrial fibrillation and other arrhythmias which are serious conditions. With the available skills and knowledge, we can begin to offer alternative adjunctive treatment that would have a significant positive effect on the morbidity and/or mortality of our patients.”

Dr Moroka points out that with the advent and advances in machine learning and digital health technology, we are in an exciting era of possibilities of obtaining valuable biological data and biometric parameters that would assist in the reduction of risk and prevention of a diversity of cardiovascular diseases and to guide clinical practice guidelines. 

“The current focus is risk reduction, prevention of cardiovascular diseases and the establishment and development of personalized health care, with a growing interest in cardiovascular genetics and gene therapy.  Who knows what the future will bring, but for now the focus is to work towards good health and disease alleviation,” she says. 

News Archive

Sunflowers are satellite dishes for sunshine, or are they?
2016-07-20

Eighty-six percent of South Africa’s
sunflowers are produced in the
Free State and North West provinces.

Helen Mirren, the English actress, said “the sunflower is like a satellite dish for sunshine”. However, researchers at the University of the Free State (UFS) have found that too much of this sunshine could have a negative effect on the growth of sunflowers, which are a major source of oil in South Africa.

According to Dr Gert Ceronio from the Department of Soil, Crop, and Climate Sciences at the UFS, extremely high soil temperatures play a definite role in the sprouting of sunflower seedlings. Together with Lize Henning, professional officer in the department, and Dr André Nel from the Agricultural Research Council, he is doing research on biotic and abiotic factors that could have an impact on sunflowers.

Description: Sonneblom 2 Tags: Sonneblom 2

Various degrees of deformity (bad-left
to none-right) in seedlings of the same
cultivar at very high soil temperatures.
Photo: Dr Gert Ceronio

Impact of high temperatures on sunflower production

The Free State and North West provinces, which produce 86% of South Africa’s sunflowers, are afflicted especially by high summer temperatures that lead to extremely high soil temperatures.

Dr Ceronio says: “Although sunflower seeds are able to germinate at temperatures from as low as 4°C to as high as 41°C, soil temperatures of 35°C and higher could have a negative effect on the vegetative faculty of sunflower seedlings, and could have an adverse effect on the percentage of sunflowers that germinate. From the end of November until mid-January, this is a common phenomenon in the sandy soil of the Free State and North West provinces. Soil temperatures can easily exceed the critical temperature of 43°C, which can lead to poor germination and even the replanting of sunflowers.”

Since temperature have a huge impact not only on the germination of sunflower seeds, but also on the vegetative faculty and sprouting of sunflower seedlings, Dr Ceronio suggests that sunflowers should be planted in soil with soil temperatures of 22 to 30°C. Planting is usually done in October and early November. Unfortunately, this is not always possible, as soil moisture is not optimal for growth. Farmers are then compelled to plant sunflowers later.

Impact of herbicides on sunflower growth

“High soil temperatures, combined with the herbicide sensitivity of some cultivars, could lead to the poor development of seedlings," says Dr Ceronio.

The use of herbicides, such as ALACHLOR, for the control of weeds in sunflowers is common practice in sunflower production. It has already been determined that ALACHLOR could still have a damaging effect on the seedlings of some cultivars during germination and sprouting, even at recommended application dosages.

“The purpose of the continued research is to establish the sensitivity of sunflower cultivars to ALACHLOR when exposed to high soil temperatures,” says Dr Ceronio.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept