Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 January 2023 | Story Dr Cindé Greyling | Photo Anja Aucamp
Dr Nomalungelo Ngubane
Dr Nomalungelo Ngubane, the Director: Academy for Multilingualism, is working through various initiatives to ensure that the UFS becomes and remains the South African leader in multilingualism.

The Academy for Multilingualism was established at the beginning of 2021, flowing from the UFS Language Policy (2016) that is currently under review, and which expresses the university’s commitment to multilingualism, with a particular emphasis on Sesotho, Afrikaans, and isiZulu, while English remains the primary medium of instruction for undergraduate and postgraduate studies.

The Student Language Preference Survey continues to indicate that many students have difficulty understanding English lectures due to language differences. Multilingual models from places like South America, India and South Africa were considered in order to structure the approach at the UFS.

Promoting indigenous languages

To mitigate the English barrier, the academy is developing multilingual academic glossaries. The multilingual glossaries are also intended to drive the promotion of indigenous languages (Sesotho/Afrikaans/IsiZulu) as academic languages, and to create multilingual learning spaces that embrace diverse languages.

Academic word lists from seven departments are in the process of being translated – in conjunction with the Unit of Lexicography – to create glossaries. The team at South African Sign Languages will add videos to these glossaries to provide unique and inclusive content in the realm of multilingualism. 

In 2022, the academy, in collaboration with the Library and Information Services, launched an African Languages Press with the aim of promoting and advancing publications of literature and research books using South African indigenous languages. 

The Academy for Multilingualism also promotes multilingualism through the Initiative for Creative African Narratives (iCAN), a programme that encourages students to write short stories in their indigenous home languages. By incorporating student narratives into learning material, students learn about one another, from one another.

The iCAN multilingual booklets are also used to encourage extensive reading among undergraduates and among learners in the surrounding community schools.

Use of translanguaging practices
 
The academy is also working with the Centre for Teaching and Learning’s (CTL) A_STEP programme to pilot the use of translanguaging practices in tutor sessions. UFS staff will also be trained on teaching and translanguaging practices. Voice-over translations of English lessons into Afrikaans and Sesotho in the Faculty of Theology and Religion paved the way for the academy to proceed with this practice in other subjects. The Translanguaging Seminar 2022, hosted by the academy and the CTL, was used as a platform for sharing translanguaging knowledge and practices by academics from the UFS and other institutions.

The Kovsies Multilingual Mokete has become a popular annual tradition celebrating different cultural expressions – in visual art, poetry, storytelling, drama, music, and song – by different language groups and in the different languages that are dominant at the UFS (i.e. English, Afrikaans, Sesotho, isiZulu, and Sign Language). This year’s event was held on the South Campus in October.

With its various initiatives, the Academy for Multilingualism will ensure that the UFS becomes and remains the South African leader in multilingualism.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept