Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 January 2023 | Story Dr Cindé Greyling | Photo Anja Aucamp
Dr Nomalungelo Ngubane
Dr Nomalungelo Ngubane, the Director: Academy for Multilingualism, is working through various initiatives to ensure that the UFS becomes and remains the South African leader in multilingualism.

The Academy for Multilingualism was established at the beginning of 2021, flowing from the UFS Language Policy (2016) that is currently under review, and which expresses the university’s commitment to multilingualism, with a particular emphasis on Sesotho, Afrikaans, and isiZulu, while English remains the primary medium of instruction for undergraduate and postgraduate studies.

The Student Language Preference Survey continues to indicate that many students have difficulty understanding English lectures due to language differences. Multilingual models from places like South America, India and South Africa were considered in order to structure the approach at the UFS.

Promoting indigenous languages

To mitigate the English barrier, the academy is developing multilingual academic glossaries. The multilingual glossaries are also intended to drive the promotion of indigenous languages (Sesotho/Afrikaans/IsiZulu) as academic languages, and to create multilingual learning spaces that embrace diverse languages.

Academic word lists from seven departments are in the process of being translated – in conjunction with the Unit of Lexicography – to create glossaries. The team at South African Sign Languages will add videos to these glossaries to provide unique and inclusive content in the realm of multilingualism. 

In 2022, the academy, in collaboration with the Library and Information Services, launched an African Languages Press with the aim of promoting and advancing publications of literature and research books using South African indigenous languages. 

The Academy for Multilingualism also promotes multilingualism through the Initiative for Creative African Narratives (iCAN), a programme that encourages students to write short stories in their indigenous home languages. By incorporating student narratives into learning material, students learn about one another, from one another.

The iCAN multilingual booklets are also used to encourage extensive reading among undergraduates and among learners in the surrounding community schools.

Use of translanguaging practices
 
The academy is also working with the Centre for Teaching and Learning’s (CTL) A_STEP programme to pilot the use of translanguaging practices in tutor sessions. UFS staff will also be trained on teaching and translanguaging practices. Voice-over translations of English lessons into Afrikaans and Sesotho in the Faculty of Theology and Religion paved the way for the academy to proceed with this practice in other subjects. The Translanguaging Seminar 2022, hosted by the academy and the CTL, was used as a platform for sharing translanguaging knowledge and practices by academics from the UFS and other institutions.

The Kovsies Multilingual Mokete has become a popular annual tradition celebrating different cultural expressions – in visual art, poetry, storytelling, drama, music, and song – by different language groups and in the different languages that are dominant at the UFS (i.e. English, Afrikaans, Sesotho, isiZulu, and Sign Language). This year’s event was held on the South Campus in October.

With its various initiatives, the Academy for Multilingualism will ensure that the UFS becomes and remains the South African leader in multilingualism.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept