Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2023 | Story André Damons | Photo Supplied
Dr Mirriam Moleko
Dr Mirriam Moleko, a lecturer in the Department of Mathematics, Natural Sciences, and Technology Education in the UFS Faculty of Education, participated in the National Research Foundation’s Black Academics Advancement Programme fellowship and got the opportunity to visit universities and schools in the USA for three weeks.

After completing the National Research Foundation’s Black Academics Advancement Programme (BAAP) fellowship, a lecturer from the University of the Free State (UFS) now wants to train more teachers on issues of access and inclusivity in different mathematics settings. She also wants to establish a centre for access and inclusivity to promote quality teaching that caters to a diverse learner population.

Dr Mirriam Moleko, a lecturer in the UFS’s Department of Mathematics, Natural Sciences, and Technology Education in the Faculty of Education, participated in the BAAP fellowship, an initiative of the National Research Foundation (NRF) and the FirstRand Foundation (FRF), from 2021 to 2022. She also got the opportunity to visit universities and schools in the USA for three weeks.

Supporting emerging academics

Dr Moleko says the BAAP is a prestigious NRF programme which supports well-structured research projects with achievable aims, sound methodologies, and demonstrated prudent use of funds. The programme supports emerging academics to ensure that they develop strong research skills, collaborate with prolific scholars in their fields, visit other universities abroad, give public lectures, and attend international conferences to establish an international footprint.

“The programme allows the candidates awarded the grant to focus on research for two years” she says. “I managed to run my teacher community research project successfully during this period. My goal as an academic and a researcher is to produce work that teachers can relate to and be able to apply in their profession. I have always aspired to empower teachers to be knowledgeable and resourceful”.

“Furthermore, my goal is to strive to partake in critical conversations that are taking place within the mathematics education field, and to contribute my skills and knowledge in addressing the existing challenges, thus being part of the solution. I believe the skills that I have gained on how to conduct quality research will assist me in achieving my goals,” she added.

Benefit from funding

During the period of her fellowship she learned about forming partnerships and collaborating with other scholars in her field, which she believes is an important skill to possess as a developing scholar.

Dr Moleko says the programme played a pivotal role in the attainment of numerous significant accomplishments in her professional career thus far. She also benefitted in terms of funding, which helped her undertake autonomous research and advanced training in her area of expertise, as well as facilitated engagement in collaborative research ventures with esteemed professionals and researchers, both domestically and abroad.

“The research leave that I got enabled me to successfully conceptualise, strategise, and implement a research endeavour that yielded a more profound comprehension of the research gap that I had identified within the teacher community, thus culminating in multiple publications in esteemed periodicals.

“The NRF-BAAP funding also enabled me to undertake training, thereby refining my skill set and augmenting my comprehension of intricate principles. The experience proved to be a crucial factor in my vocational growth and bolstered my aptitude for scholarly inquiry. It also afforded me the chance to engage in mentoring endeavours for fledgling researchers.”

Transformation of the Professoriate Mentoring Programme

Dr Moleko, who is part of the UFS Transformation of the Professoriate Mentoring Programme, says this programme is an excellent initiative which is aimed at preparing young academics for future promotions and offering them skills to be competitive. The programme’s goals include building strong academics who will follow in the footsteps of the university’s current leaders.

She says the programme is critical in supporting young academics by connecting them with seasoned mentors and scholars from various fields of study. It is essential for young academics in terms of maximising their learning, expanding their network, and gaining opportunities to help facilitate their growth.

“I see the programme as a catalyst for change necessary for the university to realise the desired results,” Dr Moleko says.

During her visit to the USA she spent two weeks at Boston College and the University of Rhode Island, and also visited the Center for Applied and Specialised Technology, the Paul V. Sherlock Center on Disabilities (Sherlock Center), and the TechACCESS Center.

“The purpose of my visit was to establish networks and collaborate with prolific scholars outside South Africa on research engagements. Furthermore, the visit was intended for me to meet with my international mentors in person regarding research engagements.

“During my research visit, Prof Elizabeth Dalton from Rhode Island University and a UDL specialist, and I focused on several academic conversations and demonstrations of Universal Design for Learning (UDL) strategies and approaches, as well as the sharing of many online resources available to support the implementation of UDL in inclusive settings.”

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept