Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 July 2023 | Story André Damons | Photo Supplied
Dr Osayande Evbuomwan
Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine at the University of the Free State (UFS), with his certificate after winning the Society of Nuclear Medicine and Molecular Imaging (SNMMI) International Best Abstract Award for South Africa.

A research paper by a Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine at the University of the Free State (UFS) has won the Society of Nuclear Medicine and Molecular Imaging (SNMMI) International Best Abstract Award for South Africa.

The abstract, by Dr Osayande Evbuomwan, was about evaluating the efficacy of a new nuclear medicine radiopharmaceutical in the identification of active disease in patients with rheumatoid arthritis. It was selected for this award by a special committee at the recently concluded SNMMI 2023 Annual Meeting, which took place between 24 and 27 June in Chicago, USA.

Dr Evbuomwan received the award at the Annual Meeting on 26 June.

“It is a good feeling, and I am proud of the UFS Department of Nuclear Medicine for pulling this off. It is another example that hard work pays,” he says.

Comparing this radiopharmaceutical to ultrasound

Dr Evbuomwan says the research that generated the award-winning abstract was aimed at finding out if the new nuclear medicine radiopharmaceutical for the identification of active disease in patients with rheumatoid arthritis can also offer prognostic information. The study concluded that this particular radiopharmaceutical (Tc – 99m glucosamine) is highly sensitive in identifying synovitis (inflammation of the membrane that protects joints), and is capable of offering prognostic information in patients with rheumatoid arthritis.

This is the first prospective study to assess the prognostic value of this radiopharmaceutical in patients with rheumatoid arthritis, Dr Evbuomwan says. He is currently working on comparisons of this radiopharmaceutical to ultrasound and clinical evaluation in the identification of active disease in patients with rheumatoid arthritis. He says there is also ongoing collaboration with the Rheumatology Division of the Internal Medicine Department, which has played a huge role in making this project fruitful.

“This award is an opportunity to put the department and university on the map, with world stage recognition. We believe that as the Nuclear Medicine Department continues to grow in human resources and equipment, the research output will also increase.”

Dr Gerrit Engelbrecht, Clinical Head of the Department of Nuclear Medicine at the UFS, says the whole department is very proud of Dr Evbuomwan’s accomplishments. “What makes his award even more remarkable is that he outperformed candidates from much larger, highly funded institutions,” he says.

This department announced last year the successful treatment outcome of a patient with metastatic castrate-resistant prostate cancer (MCRPC) – an advanced stage of prostate cancer – by using Lutetium 177 PSMA (Lu-177 PSMA) therapy. This was initially a case of advanced stage prostate cancer, which had failed first-line chemotherapy, leaving little or no other treatment options.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept