Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 July 2023 | Story André Damons | Photo Supplied
Dr Osayande Evbuomwan
Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine at the University of the Free State (UFS), with his certificate after winning the Society of Nuclear Medicine and Molecular Imaging (SNMMI) International Best Abstract Award for South Africa.

A research paper by a Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine at the University of the Free State (UFS) has won the Society of Nuclear Medicine and Molecular Imaging (SNMMI) International Best Abstract Award for South Africa.

The abstract, by Dr Osayande Evbuomwan, was about evaluating the efficacy of a new nuclear medicine radiopharmaceutical in the identification of active disease in patients with rheumatoid arthritis. It was selected for this award by a special committee at the recently concluded SNMMI 2023 Annual Meeting, which took place between 24 and 27 June in Chicago, USA.

Dr Evbuomwan received the award at the Annual Meeting on 26 June.

“It is a good feeling, and I am proud of the UFS Department of Nuclear Medicine for pulling this off. It is another example that hard work pays,” he says.

Comparing this radiopharmaceutical to ultrasound

Dr Evbuomwan says the research that generated the award-winning abstract was aimed at finding out if the new nuclear medicine radiopharmaceutical for the identification of active disease in patients with rheumatoid arthritis can also offer prognostic information. The study concluded that this particular radiopharmaceutical (Tc – 99m glucosamine) is highly sensitive in identifying synovitis (inflammation of the membrane that protects joints), and is capable of offering prognostic information in patients with rheumatoid arthritis.

This is the first prospective study to assess the prognostic value of this radiopharmaceutical in patients with rheumatoid arthritis, Dr Evbuomwan says. He is currently working on comparisons of this radiopharmaceutical to ultrasound and clinical evaluation in the identification of active disease in patients with rheumatoid arthritis. He says there is also ongoing collaboration with the Rheumatology Division of the Internal Medicine Department, which has played a huge role in making this project fruitful.

“This award is an opportunity to put the department and university on the map, with world stage recognition. We believe that as the Nuclear Medicine Department continues to grow in human resources and equipment, the research output will also increase.”

Dr Gerrit Engelbrecht, Clinical Head of the Department of Nuclear Medicine at the UFS, says the whole department is very proud of Dr Evbuomwan’s accomplishments. “What makes his award even more remarkable is that he outperformed candidates from much larger, highly funded institutions,” he says.

This department announced last year the successful treatment outcome of a patient with metastatic castrate-resistant prostate cancer (MCRPC) – an advanced stage of prostate cancer – by using Lutetium 177 PSMA (Lu-177 PSMA) therapy. This was initially a case of advanced stage prostate cancer, which had failed first-line chemotherapy, leaving little or no other treatment options.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept