Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 June 2023 Photo Supplied
UFS Experts
Ms Akani Baloyi is from the Disaster Management Training and Education Centre for Africa (DiMTEC) at the University of the Free State. | Dr Olivia Kunguma is from the Disaster Management Training and Education Centre for Africa (DiMTEC) at the University of the Free State. | Dr Arishka Kalicharan, Department of Basic Medical Sciences, UFS

 


Opinion article by Ms Akani Baloyi; Dr Olivia Kunguma, Disaster Management Training and Education Centre for Africa (DiMTEC) at the University of the Free State; and Dr Arishka Kalicharan, Department of Basic Medical Sciences, Faculty of Health Sciences, University of the Free State.

Since the 1800s, many countries globally have had a long history of cholera outbreaks, with several countries experiencing periodic outbreaks and the disease remaining a public health concern. In Africa, countries like Senegal, Malawi, Zimbabwe, the Democratic Republic of Congo, Tanzania and many more have suffered greatly from this water-borne plague.

South Africa is among these countries – one of its major outbreaks, in 2008, killed more than 65 people, with more than 12 000 cases reported. The outbreak spread from Musina in Limpopo to the other provinces. The spread of cholera from Musina was attributed to a 2008/2009 outbreak in Zimbabwe, which affected more than 98 000 people; this was a case of disease contagion.

The 2008/2009 Zimbabwe outbreak was rated the country and the world’s largest ever recorded. Due to its political and economic crises, thousands of Zimbabweans migrated to South Africa. The movement of people from Zimbabwe helped spread the disease, as it is highly contagious. Because South Africa also had its own political and economic issues, cholera started spreading like wildfire. Similarly to Zimbabwe, South Africa is struggling with service delivery by local authorities due to poor governance and corruption.

In an effort to improve Zimbabwe’s health  system after that outbreak, the United Nations donated almost $5 million. Despite such a big cash injection, the country’s health system is still not of a standard that can help mitigate and prevent cholera. The country still finds itself losing people due to cholera outbreaks.

The challenge in Africa is that decision-makers suffer from ‘reactive syndrome’, i.e. they wait for an outbreak before intiating activities like surveillance, health promotion, encouraging of laboratory testing, assessing and maintaining boreholes/ municipal water plants, and providing temporary emergency water, sanitation and hygiene. Only when an outbreak is already under way do they remember the existence of emergency and response plans, and then start updating them.

A recent cholera outbreak in Hammanskraal, north of Tshwane in Gauteng, South Africa, had claimed 23 lives by 28 May after residents were diagnosed with diarrhoeal disease due to cholera. In the neighbouring Free State, two deaths had been reported by 9 June.

It has become common knowledge that the main source of cholera infection is poor sanitation, lack of clean water, and contaminated food. But it is important to also know that most people exposed to the cholera bacterium do not get sick. They are unaware they have been infected, unless they start displaying symptoms such as diarrhoea, vomiting, and muscle cramps. Excessive diarrhoea can lead to dehydration, making it difficult for the body to perform basic functions. If left untreated, diarrhoea can be fatal.

The root causes are exacerbated by poor investment in public health and an unsettled political environment, in particular governance of municipalities and neglect of water treatment plants. The prevalence of this preventable infectious disease demands immediate attention from policymakers, health organisations, and society in general. Addressing the root causes, boosting preventative measures, and ensuring access to clean water and adequate healthcare services to eradicate cholera in South Africa is crucial.

How can we mitigate and prevent the spread of cholera?

While we lobby for policymakers or people who hold political power to be called to account and advocate for large-scale investment in establishing and maintaining water and sanitation facilities and the strengthening of public health community engagement, we need to consider some methods the public can explore.

Most infected people will have few to mild symptoms, which can be successfully treated with an oral rehydration solution. This solution replenishes the body’s fluid levels and can treat mild dehydration caused by diarrhoea, vomiting, or other medical conditions. Oral rehydration solutions can be made at home with the following ingredients:

  • 1 litre of preboiled water (an effective way to disinfect the water)
  • 6 level teaspoons of sugar (improves the absorption of electrolytes and water)
  • ½ teaspoon of salt (promotes water absorption, since there is significant fluid loss due to diarrhoea)
  • 1 tablespoon (or a palatable amount) of white vinegar (contains antimicrobial properties for preventing and treating infections)

This solution should be consumed after every loose stool, or as often as possible. If a child has been infected with the disease, in addition to the oral solution, give the child 20 mg (over 6 months of age) or 10 mg (under 6 months of age) zinc per day (tablet or syrup).

We should also always adhere to cost-effective habits such as routinely washing our hands and consuming preboiled water.

There are also three World Health Organisation (WHO) pre-approved oral cholera vaccines, namely Dukoral, Shanchol, and Euvichol-Plus. They all require two doses for full protection. These vaccines are available at the nearest clinic or hospital, and are relatively cost-effective.

Cholera and several other public health crises should not exist in the modern economy we are living in. Africa has the resources needed, including several medical interventions. Africa must address its issue regarding political leadership, which is its biggest challenge. There is an urgent need for proactiveness among our political leaders and government authorities which should see them take the lead in continuous multi-sectoral collaboration. They should invest in preparedness programmes that include training health workers and surveillance. And lastly, there is an urgent need for an accountability system for all the funds donated and invested towards improving a country’s healthcare system.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept