Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 June 2023 | Story Valentino Ndaba | Photo Supplied
GBV UFS Values
Values are a powerful tool in the fight against gender-based violence.

Dr Choice Makhetha, a participant in a recent dialogue focused on the role of student leadership in eradicating gender-based violence (GBV), conveyed a pivotal message during her opening statement. She emphasised universities’ dedication to reshaping and instilling new values in the lives of students. This sentiment laid the foundation for an insightful discussion centred on the importance of values in combating GBV. 

"In university, we work hard to reshape and bring new values into students' lives,” said the Director of Student Affairs at Stellenbosch University, who is a former University of the Free State (UFS) Vice-Rector: External Relations, Dean of Student Affairs, and alumna.

The dialogue was a collaborative effort between the Gender Equality and Anti-Discrimination Office and the Division of Student Affairs. It featured esteemed experts in student governance and leadership, including Sikhululekile Luwaca, Assistant Researcher in the UFS Unit for Institutional Change and Social Justice, Prof Nicky Morgan, former UFS Vice-Rector: Operations, and Moema Motlogelwa, Assistant Director in Student Affairs.

The importance of being value-driven

Luwaca emphasised the need for student leaders to contemplate UFS values. He remarked, "Vision 130 commits us to be accountable. It affirms that those within the UFS will be held accountable. We are devoted to creating an environment that fosters exceptional teaching, learning, and scholarship, as well as caring for ourselves, our fellow human beings, and the natural environment. Our commitment lies in advancing the values of human dignity through ethical and transparent conduct, along with institutional responsibility."

In addition, Luwaca proposed the implementation of a prerequisite course on GBV for all students aspiring to hold positions in the Student Representative Council. This measure would further enhance awareness and understanding of GBV among future leaders.

Echoing similar sentiments, Prof Morgan advocated for justice and respect as fundamental guiding principles in all interactions. “Develop an internal compass of what is right – and that does not depend on laws, politics, or democracy. GBV among our leaders is not a political issue.”

With great power comes great responsibility

Motlogelwa's contribution focused on developing student leaders and addressing gender-based violence (GBV). He highlighted three key steps: awareness and education, advocacy and support, and strengthening partnerships. He emphasised the need for well-informed student leaders who understand university policies and referral systems. Motlogelwa also stressed the importance of advocating and supporting GBV prevention. Additionally, he proposed collaborative efforts with relevant entities to achieve common goals. Ultimately, the goal is to produce model citizens who embody the university's vision and values.

What values do we subscribe to as an institution? 

At the UFS, our values are integral to shaping our culture and guiding our actions and choices. These values include a commitment to excellence, innovation, and impact, as well as accountability, care, and social justice. These principles are articulated in Vision 130, our strategic intent to reposition the institution by the time of its 130th anniversary in 2034.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept