Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 June 2023 | Story André Damons | Photo André Damons
Prof Jan Du Plessis
Prof Jan du Plessis is Head of the Paediatric Oncology Unit at the University of the Free State.

Many children in South Africa diagnosed with childhood cancer have a poorer overall survival rate and are more likely to abandon their treatment because they experience high poverty and food insecurity at home.

This is according to findings from a new study which Prof Jan du Plessis, Head of the Paediatric Oncology Unit at the University of the Free State (UFS), was part of. The study, titled ‘Prevalence of Poverty and Hunger at Cancer Diagnosis and Its Association with Malnutrition and Overall Survival in South Africa’, was recently published in the journal Nutrition and Cancer.

It found a high prevalence of poverty and hunger among South African children diagnosed with cancer. Food insecurity was associated with treatment abandonment and poorer overall survival.

The research was conceptualised by Judy Schoeman, dietitian at the Steve Biko Academic Hospital, as part of her PhD study. Prof Du Plessis and departmental dietitian Mariechen Herholdt, who recognised the importance and value of this study, enrolled patients, collected data, and critically reviewed the manuscript. Five different paediatric oncology units throughout the country participated.

Stunting as indicator of chronic malnutrition

Prof Du Plessis says stunting is an indicator of chronic malnutrition, and causes tissue damage, reduced function of neurotransmitters, and decreased overall development of all factors. Stunting is also associated with reduced lung growth and -function, which can influence the prevalence of pulmonary infections, have an impact on morbidity, and increase the risk of mortality. It also affects cognitive development, with poorer academic achievement and reduced economic productivity for children and adults affected by stunting.

“Our study found that South African children with malnutrition at cancer diagnosis often experienced food insecurity at home, underscoring the need to address primary rather than secondary malnutrition. This observation was especially apparent among children from rural provinces,” Prof Du Plessis says. “Many children in our study experienced high poverty and food insecurity risk at diagnosis; thus, nutritional counselling targeting dietary intake in the home setting should be a priority for these patients.”

High-quality diet may have protective effect

Recent literature has found that a high-quality diet may have a protective effect against some treatment-related toxicities of cancer treatment. Hunger at home was significantly associated with increased risk for treatment abandonment and risk of death.

Prof Du Plessis states, “According to the South African census (2015), 30 million people live on less than R84.11 (US$5) per day, and 55% of South African children live below the ultra-poverty line (R800/month or US$45.81/month)…

“In a previous South African study of children with germ cell tumours from families with higher socioeconomic status (household income of US$191/year or US$6/day), they have experienced significantly improved overall survival (OS) at five years. Indonesian children from low-income families diagnosed with acute lymphoblastic leukaemia have also experienced significantly lower event-free survival two years or longer after diagnosis than those from higher-income families.”

Prof Du Plessis says nutritional intervention should be implemented from diagnosis to improve patients’ nutritional status and survival.

Enhance collaborations to enhance outcomes

The study further illustrated that children with stunting and malnutrition at cancer diagnosis were more likely to live in poverty, thereby highlighting a group of children needing social services and support networks over and above the existing structures available to South African children with cancer.

The study underscores the need for medical centres to enhance collaboration with organisations that provide financial and/or other support to families throughout treatment to enhance outcomes.

The study came about as poor nutritional status in children with cancer has been associated with poorer cancer outcomes. Identifying modifiable risk factors that lead to poor nutrition in children with cancer is an understudied area, especially in a country such as South Africa, explains Prof Du Plessis. 

“Understanding the scope of poverty and hunger and its association with nutritional status among children undergoing cancer treatment is needed. As half of South Africans experience chronic poverty over time, food insecurity will be affected; we investigated the prevalence of poverty and food insecurity at cancer diagnosis, their association with malnutrition at the time of diagnosis, and overall survival at one year post-diagnosis.

“Malnutrition is a modifiable prognostic risk factor. The findings underscore the importance of incorporating an assessment of the risk of living in poverty and/or with food insecurity at diagnosis – and potentially throughout therapy – to ensure that families are referred to appropriate support networks. Evaluating sociodemographic factors at diagnosis is essential among South African children to identify at-risk children and implement adequate nutritional support during cancer treatment,” Prof Du Plessis concludes.

This research aligns with the UFS’s Vision 130 – to not only be a university that cares and is sustainable, but also to be a research-led, student-centred, and regionally engaged university that contributes to development and social justice. This knowledge will assist in efficiently allocating hospital resources and establishing support networks to ensure that the most vulnerable children are supported with proactive nutrition interventions while undergoing cancer treatment.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept