Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 June 2023 | Story André Damons | Photo André Damons
Prof Jan Du Plessis
Prof Jan du Plessis is Head of the Paediatric Oncology Unit at the University of the Free State.

Many children in South Africa diagnosed with childhood cancer have a poorer overall survival rate and are more likely to abandon their treatment because they experience high poverty and food insecurity at home.

This is according to findings from a new study which Prof Jan du Plessis, Head of the Paediatric Oncology Unit at the University of the Free State (UFS), was part of. The study, titled ‘Prevalence of Poverty and Hunger at Cancer Diagnosis and Its Association with Malnutrition and Overall Survival in South Africa’, was recently published in the journal Nutrition and Cancer.

It found a high prevalence of poverty and hunger among South African children diagnosed with cancer. Food insecurity was associated with treatment abandonment and poorer overall survival.

The research was conceptualised by Judy Schoeman, dietitian at the Steve Biko Academic Hospital, as part of her PhD study. Prof Du Plessis and departmental dietitian Mariechen Herholdt, who recognised the importance and value of this study, enrolled patients, collected data, and critically reviewed the manuscript. Five different paediatric oncology units throughout the country participated.

Stunting as indicator of chronic malnutrition

Prof Du Plessis says stunting is an indicator of chronic malnutrition, and causes tissue damage, reduced function of neurotransmitters, and decreased overall development of all factors. Stunting is also associated with reduced lung growth and -function, which can influence the prevalence of pulmonary infections, have an impact on morbidity, and increase the risk of mortality. It also affects cognitive development, with poorer academic achievement and reduced economic productivity for children and adults affected by stunting.

“Our study found that South African children with malnutrition at cancer diagnosis often experienced food insecurity at home, underscoring the need to address primary rather than secondary malnutrition. This observation was especially apparent among children from rural provinces,” Prof Du Plessis says. “Many children in our study experienced high poverty and food insecurity risk at diagnosis; thus, nutritional counselling targeting dietary intake in the home setting should be a priority for these patients.”

High-quality diet may have protective effect

Recent literature has found that a high-quality diet may have a protective effect against some treatment-related toxicities of cancer treatment. Hunger at home was significantly associated with increased risk for treatment abandonment and risk of death.

Prof Du Plessis states, “According to the South African census (2015), 30 million people live on less than R84.11 (US$5) per day, and 55% of South African children live below the ultra-poverty line (R800/month or US$45.81/month)…

“In a previous South African study of children with germ cell tumours from families with higher socioeconomic status (household income of US$191/year or US$6/day), they have experienced significantly improved overall survival (OS) at five years. Indonesian children from low-income families diagnosed with acute lymphoblastic leukaemia have also experienced significantly lower event-free survival two years or longer after diagnosis than those from higher-income families.”

Prof Du Plessis says nutritional intervention should be implemented from diagnosis to improve patients’ nutritional status and survival.

Enhance collaborations to enhance outcomes

The study further illustrated that children with stunting and malnutrition at cancer diagnosis were more likely to live in poverty, thereby highlighting a group of children needing social services and support networks over and above the existing structures available to South African children with cancer.

The study underscores the need for medical centres to enhance collaboration with organisations that provide financial and/or other support to families throughout treatment to enhance outcomes.

The study came about as poor nutritional status in children with cancer has been associated with poorer cancer outcomes. Identifying modifiable risk factors that lead to poor nutrition in children with cancer is an understudied area, especially in a country such as South Africa, explains Prof Du Plessis. 

“Understanding the scope of poverty and hunger and its association with nutritional status among children undergoing cancer treatment is needed. As half of South Africans experience chronic poverty over time, food insecurity will be affected; we investigated the prevalence of poverty and food insecurity at cancer diagnosis, their association with malnutrition at the time of diagnosis, and overall survival at one year post-diagnosis.

“Malnutrition is a modifiable prognostic risk factor. The findings underscore the importance of incorporating an assessment of the risk of living in poverty and/or with food insecurity at diagnosis – and potentially throughout therapy – to ensure that families are referred to appropriate support networks. Evaluating sociodemographic factors at diagnosis is essential among South African children to identify at-risk children and implement adequate nutritional support during cancer treatment,” Prof Du Plessis concludes.

This research aligns with the UFS’s Vision 130 – to not only be a university that cares and is sustainable, but also to be a research-led, student-centred, and regionally engaged university that contributes to development and social justice. This knowledge will assist in efficiently allocating hospital resources and establishing support networks to ensure that the most vulnerable children are supported with proactive nutrition interventions while undergoing cancer treatment.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept