Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 June 2023 | Story André Damons | Photo André Damons
Prof Jan Du Plessis
Prof Jan du Plessis is Head of the Paediatric Oncology Unit at the University of the Free State.

Many children in South Africa diagnosed with childhood cancer have a poorer overall survival rate and are more likely to abandon their treatment because they experience high poverty and food insecurity at home.

This is according to findings from a new study which Prof Jan du Plessis, Head of the Paediatric Oncology Unit at the University of the Free State (UFS), was part of. The study, titled ‘Prevalence of Poverty and Hunger at Cancer Diagnosis and Its Association with Malnutrition and Overall Survival in South Africa’, was recently published in the journal Nutrition and Cancer.

It found a high prevalence of poverty and hunger among South African children diagnosed with cancer. Food insecurity was associated with treatment abandonment and poorer overall survival.

The research was conceptualised by Judy Schoeman, dietitian at the Steve Biko Academic Hospital, as part of her PhD study. Prof Du Plessis and departmental dietitian Mariechen Herholdt, who recognised the importance and value of this study, enrolled patients, collected data, and critically reviewed the manuscript. Five different paediatric oncology units throughout the country participated.

Stunting as indicator of chronic malnutrition

Prof Du Plessis says stunting is an indicator of chronic malnutrition, and causes tissue damage, reduced function of neurotransmitters, and decreased overall development of all factors. Stunting is also associated with reduced lung growth and -function, which can influence the prevalence of pulmonary infections, have an impact on morbidity, and increase the risk of mortality. It also affects cognitive development, with poorer academic achievement and reduced economic productivity for children and adults affected by stunting.

“Our study found that South African children with malnutrition at cancer diagnosis often experienced food insecurity at home, underscoring the need to address primary rather than secondary malnutrition. This observation was especially apparent among children from rural provinces,” Prof Du Plessis says. “Many children in our study experienced high poverty and food insecurity risk at diagnosis; thus, nutritional counselling targeting dietary intake in the home setting should be a priority for these patients.”

High-quality diet may have protective effect

Recent literature has found that a high-quality diet may have a protective effect against some treatment-related toxicities of cancer treatment. Hunger at home was significantly associated with increased risk for treatment abandonment and risk of death.

Prof Du Plessis states, “According to the South African census (2015), 30 million people live on less than R84.11 (US$5) per day, and 55% of South African children live below the ultra-poverty line (R800/month or US$45.81/month)…

“In a previous South African study of children with germ cell tumours from families with higher socioeconomic status (household income of US$191/year or US$6/day), they have experienced significantly improved overall survival (OS) at five years. Indonesian children from low-income families diagnosed with acute lymphoblastic leukaemia have also experienced significantly lower event-free survival two years or longer after diagnosis than those from higher-income families.”

Prof Du Plessis says nutritional intervention should be implemented from diagnosis to improve patients’ nutritional status and survival.

Enhance collaborations to enhance outcomes

The study further illustrated that children with stunting and malnutrition at cancer diagnosis were more likely to live in poverty, thereby highlighting a group of children needing social services and support networks over and above the existing structures available to South African children with cancer.

The study underscores the need for medical centres to enhance collaboration with organisations that provide financial and/or other support to families throughout treatment to enhance outcomes.

The study came about as poor nutritional status in children with cancer has been associated with poorer cancer outcomes. Identifying modifiable risk factors that lead to poor nutrition in children with cancer is an understudied area, especially in a country such as South Africa, explains Prof Du Plessis. 

“Understanding the scope of poverty and hunger and its association with nutritional status among children undergoing cancer treatment is needed. As half of South Africans experience chronic poverty over time, food insecurity will be affected; we investigated the prevalence of poverty and food insecurity at cancer diagnosis, their association with malnutrition at the time of diagnosis, and overall survival at one year post-diagnosis.

“Malnutrition is a modifiable prognostic risk factor. The findings underscore the importance of incorporating an assessment of the risk of living in poverty and/or with food insecurity at diagnosis – and potentially throughout therapy – to ensure that families are referred to appropriate support networks. Evaluating sociodemographic factors at diagnosis is essential among South African children to identify at-risk children and implement adequate nutritional support during cancer treatment,” Prof Du Plessis concludes.

This research aligns with the UFS’s Vision 130 – to not only be a university that cares and is sustainable, but also to be a research-led, student-centred, and regionally engaged university that contributes to development and social justice. This knowledge will assist in efficiently allocating hospital resources and establishing support networks to ensure that the most vulnerable children are supported with proactive nutrition interventions while undergoing cancer treatment.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept