Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 June 2023 | Story Valentino Ndaba | Photo Supplied
Akani Baloyi
Akani Baloyi is a Presidential Youth Employment Initiative (PYEI) Intern in the Disaster Management Training and Education Centre for Africa.

The University of the Free State (UFS) is celebrating Youth Month by showcasing the positive influence of the institution on career development. As part of this initiative, we are sharing the stories of UFS alumni who are now working at the university.

Akani Baloyi, Presidential Youth Employment Initiative (PYEI) Intern in the Disaster Management Training and Education Centre for Africa (DiMTEC), shares her UFS journey:

Q: Year of graduation from the UFS:

A: 2016, 2018, and 2023.

Q: Qualification obtained from the UFS:

A: My first qualification was a Bachelor of Social Sciences in Human Societal Dynamics, my second qualification was a Postgraduate Diploma in Disaster Management, and my third qualification was a Master of Disaster Management.

Q: Date of joining the UFS as a staff member:

A: I have had the opportunity of holding multiple positions at the UFS during my postgraduate studies. The first role I took on was in 2019 when I was a Contact Session Assistant in DiMTEC.

Q: Initial job title and current job title:

A: During my master’s studies, I had the opportunity to take on some roles that helped prepare me for the professional world. I worked as a Contact Session Assistant in DiMTEC during the postgraduate diploma and master’s contact sessions, as an Assistant Officer in Student Academic Services, and as a Research Assistant in the Centre for Environmental Management. I am currently employed as a PYEI Intern at UFS-DiMTEC.

Q: How did the UFS prepare you for the professional world?

A: The roles that I took on during my postgraduate studies at the UFS have contributed so much to my personal and professional development. In the role of Contact Session Assistant, I acquired a diverse set of skills, such as strong communication, interacting with the students, understanding their needs, and conveying information clearly. I also learned to listen actively so that I comprehend the students’ concerns, questions, and feedback in order to respond appropriately. I also developed empathy and emotional intelligence, as it is important to understand and respond to the students’ emotions and needs, to ensure that they feel supported and heard. Another important skill that I developed is organisational and time management skills, which are important for managing and handling administrative tasks, and problem-solving skills that have enabled me to address challenges that arose during the sessions.

In my role as an Assistant Officer, I developed strong communication and interpersonal skills through interactions with students and colleagues, and my customer service skills were cultivated by providing support and information to students. I also learned to pay attention to detail and confidentiality, as these skills are important when handling student records.

in the role of Research Assistant, I worked with a diverse group of people on the Summer School Project, a collaboration between the UFS, the Cape Peninsula University of Technology, and the Technical University of Dresden (Germany). I had the opportunity to be part of a great team of individuals who successfully organised and hosted an online Summer School in 2022 with the theme ‘Monitoring Surface Water Quality: General Framework, Tools and Implementing Disaster Management Aspects in Urban Areas’.

Being a student at the UFS has equipped me with specialised knowledge, critical thinking abilities, and problem-solving skills. By managing multiple responsibilities, I have learned valuable skills such as time management and organisational skills. It also provided me with networking opportunities, which have allowed me the opportunity to build connections with professionals in my field. Being a student at the UFS has facilitated my personal development, as I am now confident in myself and can easily adapt to the everyday challenges of the professional world.

Q: What are your thoughts on transitioning from a UFS alumnus to a staff member?

A: Transitioning from student to staff has been a journey filled with so many feelings. Initially, it was both exciting and scary, as I was uncertain about my new responsibilities and capabilities. However, the familiarity and comfort of the UFS brought ease to this transition. I appreciate the opportunity to continue learning and growing.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept