Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 March 2023 | Story Nonsindiso Qwabe | Photo Stephen Collett
Prof Francis Petersen_ UFS Official Opening 2023
Prof Francis Petersen outlined the strategic intent of Vision 130 during his official welcoming address.

The trajectory to 2034, when the university turns 130, is not a dream, but an exciting journey that we are working towards achieving. Painting a picture of the university of the future, UFS Rector and Vice-Chancellor, Prof Francis Petersen, welcomed staff in his official opening speech on the Bloemfontein Campus on Friday 17 February 2023.

2023 marks the starting point of Vision 130, a vision with bold ambitions that will lead us to the renewal, re-imagining, and repositioning of the UFS in 2034, Prof Petersen said.  “We are building on our strengths, achievements, and learnings of our past and, in particular, the past five years. The vision is driven by excellence, and we won’t compromise excellence. It is about excellence, but it is also about visibility as an institution, and it is about impact.”

What does the UFS look like in 2034?

Prof Petersen said ours will be a university of choice for exceptional students, exceptional academics, and exceptional support staff. We will be recognised and acknowledged by peers and society as a top-tier university in South Africa, specifically among the top five universities in South Africa and the top 600 globally.

“Remember, I said we have built on the past, specifically the past five years, to give us a foundation. Still, we need to use that foundation to be able to deliver those specific goals or activities or deliverables that we want to achieve. We will have to start now if we want to achieve this in 2034.”

The Rector outlined four goals towards achieving these commitments:

• Improving academic excellence, improving our reputation, and improving our impact.

• Promoting an environment of agility, flexibility, and responsiveness.

• Advancing a transformational institutional culture that demonstrates the values of the University of the Free State – a place where ideas are discussed, contested, improved, and implemented in a culture of civil, robust engagement.

• Promoting stewardship and the prioritisation of institutional resources for strategic intent, which include our people, our staff, and our students.

Understand how your space is connected to Vision 130

“This is about creating a culture of delivery and empowering everyone within the University of the Free State and the UFS community to contribute to the realisation of Vision 130. This is what I am asking of you within your own sphere of operation. I am asking for a renewed commitment from you to own that space that you operate in. To understand how your space is connected to Vision 130 and to share what I would call an unrelenting ambition to deliver on this vision.”

Watch recording of the 2023 Official Opening below:


News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept