Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 March 2023 | Story Nonsindiso Qwabe | Photo Stephen Collett
Prof Francis Petersen_ UFS Official Opening 2023
Prof Francis Petersen outlined the strategic intent of Vision 130 during his official welcoming address.

The trajectory to 2034, when the university turns 130, is not a dream, but an exciting journey that we are working towards achieving. Painting a picture of the university of the future, UFS Rector and Vice-Chancellor, Prof Francis Petersen, welcomed staff in his official opening speech on the Bloemfontein Campus on Friday 17 February 2023.

2023 marks the starting point of Vision 130, a vision with bold ambitions that will lead us to the renewal, re-imagining, and repositioning of the UFS in 2034, Prof Petersen said.  “We are building on our strengths, achievements, and learnings of our past and, in particular, the past five years. The vision is driven by excellence, and we won’t compromise excellence. It is about excellence, but it is also about visibility as an institution, and it is about impact.”

What does the UFS look like in 2034?

Prof Petersen said ours will be a university of choice for exceptional students, exceptional academics, and exceptional support staff. We will be recognised and acknowledged by peers and society as a top-tier university in South Africa, specifically among the top five universities in South Africa and the top 600 globally.

“Remember, I said we have built on the past, specifically the past five years, to give us a foundation. Still, we need to use that foundation to be able to deliver those specific goals or activities or deliverables that we want to achieve. We will have to start now if we want to achieve this in 2034.”

The Rector outlined four goals towards achieving these commitments:

• Improving academic excellence, improving our reputation, and improving our impact.

• Promoting an environment of agility, flexibility, and responsiveness.

• Advancing a transformational institutional culture that demonstrates the values of the University of the Free State – a place where ideas are discussed, contested, improved, and implemented in a culture of civil, robust engagement.

• Promoting stewardship and the prioritisation of institutional resources for strategic intent, which include our people, our staff, and our students.

Understand how your space is connected to Vision 130

“This is about creating a culture of delivery and empowering everyone within the University of the Free State and the UFS community to contribute to the realisation of Vision 130. This is what I am asking of you within your own sphere of operation. I am asking for a renewed commitment from you to own that space that you operate in. To understand how your space is connected to Vision 130 and to share what I would call an unrelenting ambition to deliver on this vision.”

Watch recording of the 2023 Official Opening below:


News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept