Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 March 2023 | Story Lunga Luthuli | Photo Lunga Luthuli
Volunteer students participating in a two-day training by KovsieACT to learn fundamental principles of gardening, including soil preparation, planting, watering, fertilising, and pest management.

To ensure food security for students, KovsieACT – in collaboration with the Department of Sustainable Agriculture and Food Systems – held training sessions for approximately 150 student volunteers at the University of the Free State (UFS) community gardens on the Bloemfontein Campus. 

The UFS project consists of two large food tunnels, which provide an educational intervention that addresses food insecurity on campus, and by extension, food insecurity challenges students experience in their hometowns, at home, and in their villages.

Karen Scheepers, Assistant Director: Student Life, said: “The purpose of this training is to equip students with the necessary skills to identify or recognise the need for and importance of planting and taking care of vegetables. Participating students also learned the fundamental principles of gardening, including soil preparation, planting, watering, fertilising, and pest management.”

During the training held on 8 and 9 March 2023, students were also trained to choose the right seeds and to start their own seed germination project. “The aim is to provide students with the knowledge and skills they need to grow and maintain a thriving vegetable garden,” added Scheepers.

The training was conducted by experienced professionals from the department, with students also getting an opportunity to ask questions and interact with fellow students who share their passion for gardening.

Scheepers said: “This training is a great opportunity for students to learn new skills, make new friends, and connect with the community. It will also help them to lead a healthier and more sustainable lifestyle.

The training is an extension of the institution’s No Student Hungry Programme (NSH), which continues to ensure that hundreds of students are supported with food parcels, including vegetables and non-perishable items. The NSH programme provides food to insecure students through modest food allowances and daily access to one balanced meal.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept