Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 March 2023 | Story Profs Gladys Kigozi-Male, Christo Heunis, and Michelle Engelbrecht | Photo Supplied
Prof Christo Heunis, Prof Michelle Engelbrecht, Prof Gladys Kigozi-Male
From the left, Prof Christo, Prof Michelle Engelbrecht, and Prof Gladys Kigozi-Male.

 Opinion article by Profs Gladys Kigozi-Male, Christo Heunis, and Michelle Engelbrecht, Centre for Health Systems Research and Development, University of the Free State.


Each year on 24 March, the world commemorates World TB (Tuberculosis) Day. This date coincides with the day in 1882 when Robert Koch announced his discovery of the Mycobacterium Tuberculosis, the germ that causes TB. This infectious disease is transmitted through airborne droplets when an infected person coughs, sings, shouts, or sneezes. TB primarily affects the lungs (i.e., pulmonary TB), but other organs in the body such as the pleura, lymph nodes, abdomen, genitourinary tract, skin, joints and bones, or meninges (i.e., extra-pulmonary TB) can also be affected. TB can be cured; effective anti-TB drugs have been available for almost eight decades. Despite this, TB continues to wreak havoc across the world and in South Africa. According to a report released by the World Health Organisation (WHO), an estimated 304 000 new TB cases were reported in South Africa in 2021 and 56 000 people succumbed to the disease in the same year

A world without TB

In 2014, the sixty-seventh World Health Assembly endorsed a global strategy and targets for TB prevention, care, and control. The strategy envisions a world without TB, aiming to end the epidemic by 2035. By this target date, a reduction in TB deaths of 95% and new infections of 90% – compared to the respective levels in 2015 – are anticipated. Further to this, the United Nations’ Stop TB Partnership was mandated to drive activities to end the global TB epidemic. In 2015, the partnership launched the 90-(90)-90 targets; to reach at least 90% of people with TB and place them on appropriate treatment, including at least 90% of vulnerable populations such as people living with HIV, and to ensure that at least 90% of people with TB are successfully treated. Despite commendable progress, persisting high TB infection and death rates are adversely affecting global and national efforts to end the TB epidemic. With a treatment success rate of only 78% in 2020, South Africa is sorely challenged to attain the global target of 95%.

TB with mental health illness

One of the challenges confronting TB control is the frequent comorbidity of TB with mental health illness. There is compelling evidence linking TB to common mental health problems such as depression, anxiety, and alcohol misuse. Research indicates that TB patients can experience mental health problems at any time during the course of their TB treatment. Undiagnosed mental illness among TB patients may result in poor health-seeking behaviour and non-adherence to treatment, subpar quality of life, and negative treatment outcomes. The WHO's Global End TB Strategy thus recommends integrated patient-centred TB care. This implies that TB care should be provided in close collaboration with other primary health-care (PHC) programmes such as mental health. However, in many countries – South Africa included – efforts to integrate mental health and TB care are confronted by challenges such as limited capacity, nonrecognition of mental health as a problem, insufficient resources, and TB-related social stigma. Consequently, mental health conditions in TB patients are often un-/under-/mis-diagnosed.

Taking depression as a compelling example, a scoping review reported the prevalence of depression as high as 84% among people with TB in studies conducted internationally. However, little is known about the prevalence of depression among TB patients in South Africa. Using a nine-item Patient Health Questionnaire, we assessed probable depression among a sample of TB patients attending PHC facilities in the Free State. We found that almost half (46,1%) of the 208 patients interviewed had probable depression, with 22,6%, 18,8%, and 4,8% having mild, moderate, and severe symptoms, respectively. Probable depression was almost four times more likely among patients diagnosed with extra-pulmonary TB compared to pulmonary TB patients. HIV-infected TB patients undergoing antiretroviral therapy were more than twice as likely to experience symptoms of depression compared to their counterparts who were not undergoing such therapy. This could possibly be attributed to non-adherence to antiretroviral therapy. Studies elsewhere have established a significant association between depression and ART non-adherence. We further found that the longer patients were retained on TB treatment, the less likely they were to display symptoms of depression.

Important to monitor TB patients for depression

Based on these findings, it is important to monitor TB patients for symptoms of depression – particularly those with comorbid HIV – in PHC settings. At the same time, ensuring that patients stay on treatment by providing adequate support for treatment adherence may help to mitigate depression during TB treatment. 

The theme for this year’s World TB Day is ‘Yes! We can end TB’. It is a call for concerted multi-sectoral collaboration between governments, civil society, communities, academia and technical partners, international aid and scientific organisations, the private sector, and disease control programmes in the country to eliminate the TB epidemic. To this end, TB patients attending PHC facilities in South Africa need to be routinely screened for mental health illness. Given the critical shortage of mental health specialists, screening for mental illnesses could be undertaken by trained and well-supervised non-specialist healthcare cadres such as community health workers.

News Archive

Nobel Prize-winner presents first lecture at Vice-Chancellor’s prestige lecture series
2017-11-17


 Description: Prof Levitt visit Tags: Prof Levitt visit

At the first lecture in the UFS Vice Chancellor’s Prestige Lecture series,
were from the left: Prof Jeanette Conradie, UFS Department of Chemistry;
Prof Michael Levitt, Nobel Prize-winner in Chemistry, biophysicist and
professor in structural biology at Stanford University; Prof Francis Petersen,
UFS Vice-Chancellor and Rector; and Prof Corli Witthuhn,
UFS Vice-Rector: Research. 
Photo: Johan Roux

South African born biophysicist and Nobel Prize-winner in Chemistry, Prof Michael Levitt, paid a visit to the University of the Free Sate (UFS) as part of the Academy of Science of South Africa’s (ASSAf) Distinguished Visiting Scholars’ Programme. 

Early this week the professor in structural biology at Stanford University in the US presented a captivating lecture on the Bloemfontein Campus on his lifetime’s work that earned him the Nobel Prize in 2013. His lecture launched the UFS Vice-Chancellor’s Prestige Lecture series, aimed at knowledge sharing within, and beyond our university boundaries. 

Prof Levitt was one of the first researchers to conduct molecular dynamics simulations of DNA and proteins and developed the first software for this purpose. He received the prize for Chemistry, together with Martin Karplus and Arieh Warshel, “for the development of multiscale models for complex chemical systems”.

Attending the lecture were members of UFS management, academic staff from a range of faculties and other universities as well as young researchers. “Multiscale modelling is very much based on something that makes common sense,” Prof Levitt explained. “And that is to makes things as simple as possible, but not simpler. Everything needs to have the right level of simplicity, that is not too simple, but not too complicated.”  

An incredible mind
Prof Levitt enrolled for applied mathematics at the University of Pretoria at the age of 15. He visited his uncle and aunt in London after his first-year exams, and decided to stay on because they had a television, he claims. A series on molecular biology broadcast on BBC, sparked an interest that would lead Prof Levitt via Israel, and Cambridge, to the Nobel Prize stage – all of which turned out to be vital building blocks for his research career. 

Technology to the rescue
The first small protein model that Prof Levitt built was the size of a room. But that exercise led to the birth of multiscale modelling of macromolecules. For the man on the street, that translates to computerised models used to simulate protein action, and reaction. With some adaptations, the effect of medication can be simulated on human protein in a virtual world. 

“I was lucky to stand on the shoulder of giants,” he says about his accomplishments, and urges the young to be good and kind. “Be passionate about what you do, be persistent, and be original,” he advised.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept