Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 March 2023 | Story Profs Gladys Kigozi-Male, Christo Heunis, and Michelle Engelbrecht | Photo Supplied
Prof Christo Heunis, Prof Michelle Engelbrecht, Prof Gladys Kigozi-Male
From the left, Prof Christo, Prof Michelle Engelbrecht, and Prof Gladys Kigozi-Male.

 Opinion article by Profs Gladys Kigozi-Male, Christo Heunis, and Michelle Engelbrecht, Centre for Health Systems Research and Development, University of the Free State.


Each year on 24 March, the world commemorates World TB (Tuberculosis) Day. This date coincides with the day in 1882 when Robert Koch announced his discovery of the Mycobacterium Tuberculosis, the germ that causes TB. This infectious disease is transmitted through airborne droplets when an infected person coughs, sings, shouts, or sneezes. TB primarily affects the lungs (i.e., pulmonary TB), but other organs in the body such as the pleura, lymph nodes, abdomen, genitourinary tract, skin, joints and bones, or meninges (i.e., extra-pulmonary TB) can also be affected. TB can be cured; effective anti-TB drugs have been available for almost eight decades. Despite this, TB continues to wreak havoc across the world and in South Africa. According to a report released by the World Health Organisation (WHO), an estimated 304 000 new TB cases were reported in South Africa in 2021 and 56 000 people succumbed to the disease in the same year

A world without TB

In 2014, the sixty-seventh World Health Assembly endorsed a global strategy and targets for TB prevention, care, and control. The strategy envisions a world without TB, aiming to end the epidemic by 2035. By this target date, a reduction in TB deaths of 95% and new infections of 90% – compared to the respective levels in 2015 – are anticipated. Further to this, the United Nations’ Stop TB Partnership was mandated to drive activities to end the global TB epidemic. In 2015, the partnership launched the 90-(90)-90 targets; to reach at least 90% of people with TB and place them on appropriate treatment, including at least 90% of vulnerable populations such as people living with HIV, and to ensure that at least 90% of people with TB are successfully treated. Despite commendable progress, persisting high TB infection and death rates are adversely affecting global and national efforts to end the TB epidemic. With a treatment success rate of only 78% in 2020, South Africa is sorely challenged to attain the global target of 95%.

TB with mental health illness

One of the challenges confronting TB control is the frequent comorbidity of TB with mental health illness. There is compelling evidence linking TB to common mental health problems such as depression, anxiety, and alcohol misuse. Research indicates that TB patients can experience mental health problems at any time during the course of their TB treatment. Undiagnosed mental illness among TB patients may result in poor health-seeking behaviour and non-adherence to treatment, subpar quality of life, and negative treatment outcomes. The WHO's Global End TB Strategy thus recommends integrated patient-centred TB care. This implies that TB care should be provided in close collaboration with other primary health-care (PHC) programmes such as mental health. However, in many countries – South Africa included – efforts to integrate mental health and TB care are confronted by challenges such as limited capacity, nonrecognition of mental health as a problem, insufficient resources, and TB-related social stigma. Consequently, mental health conditions in TB patients are often un-/under-/mis-diagnosed.

Taking depression as a compelling example, a scoping review reported the prevalence of depression as high as 84% among people with TB in studies conducted internationally. However, little is known about the prevalence of depression among TB patients in South Africa. Using a nine-item Patient Health Questionnaire, we assessed probable depression among a sample of TB patients attending PHC facilities in the Free State. We found that almost half (46,1%) of the 208 patients interviewed had probable depression, with 22,6%, 18,8%, and 4,8% having mild, moderate, and severe symptoms, respectively. Probable depression was almost four times more likely among patients diagnosed with extra-pulmonary TB compared to pulmonary TB patients. HIV-infected TB patients undergoing antiretroviral therapy were more than twice as likely to experience symptoms of depression compared to their counterparts who were not undergoing such therapy. This could possibly be attributed to non-adherence to antiretroviral therapy. Studies elsewhere have established a significant association between depression and ART non-adherence. We further found that the longer patients were retained on TB treatment, the less likely they were to display symptoms of depression.

Important to monitor TB patients for depression

Based on these findings, it is important to monitor TB patients for symptoms of depression – particularly those with comorbid HIV – in PHC settings. At the same time, ensuring that patients stay on treatment by providing adequate support for treatment adherence may help to mitigate depression during TB treatment. 

The theme for this year’s World TB Day is ‘Yes! We can end TB’. It is a call for concerted multi-sectoral collaboration between governments, civil society, communities, academia and technical partners, international aid and scientific organisations, the private sector, and disease control programmes in the country to eliminate the TB epidemic. To this end, TB patients attending PHC facilities in South Africa need to be routinely screened for mental health illness. Given the critical shortage of mental health specialists, screening for mental illnesses could be undertaken by trained and well-supervised non-specialist healthcare cadres such as community health workers.

News Archive

Inaugural lecture: Prof Robert Bragg, Dept. of Microbial, Biochemical and Food Biotechnology
2006-05-17



Attending the inaugural lecture were in front from the left Prof Robert Bragg (lecturer at the Department of Microbial, Biochemical and Food Biotechnology) and Frederick Fourie (Rector and Vice-Chancellor).  At the back from the left were Prof James du Preez (Departmental Chairperson:  Department of Microbial, Biochemical and Food Biotechnology) and Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences). Photo: Stephen Collett
 

A summary of an inaugural lecture delivered by Prof Robert Bragg at the University of the Free State:

CONTROL OF INFECTIOUS AVIAN DISEASES – LESSONS FOR MAN?

Prof Robert R Bragg
Department of Microbial, Biochemical and Food Biotechnology
University of the Free State

“Many of the lessons learnt in disease control in poultry will have application on human medicine,” said Prof Robert Bragg, lecturer at the University of the Free State’s (UFS) Department of Microbial, Biochemical and Food Biotechnology during his inaugural lecture.

Prof Bragg said the development of vaccines remains the main stay of disease control in humans as well as in avian species.  Disease control can not rely on vaccination alone and other disease-control options must be examined.  

“With the increasing problems of antibiotic resistance, the use of disinfection and bio security are becoming more important,” he said.

“Avian influenza (AI) is an example of a disease which can spread from birds to humans.  Hopefully this virus will not develop human to human transmission,” said Prof Bragg.

According to Prof Bragg, South Africa is not on the migration route of water birds, which are the main transmitters of AI.  “This makes South Africa one of the countries less likely to get the disease,” he said.

If the AI virus does develop human to human transmission, it could make the 1918 flu pandemic pale into insignificance.  During the 1918 flu pandemic, the virus had a mortality rate of only 3%, yet more than 50 million people died.

Although the AI virus has not developed human-to-human transmission, all human cases have been related to direct contact with infected birds. The mortality rate in humans who have contracted this virus is 67%.

“Apart from the obvious fears for the human population, this virus is a very serious poultry pathogen and can cause 100% mortality in poultry populations.  Poultry meat and egg production is the staple protein source in most countries around the world. The virus is currently devastating the poultry industry world-wide,” said Prof Bragg.

Prof Bragg’s research activities on avian diseases started off with the investigation of diseases in poultry.  “The average life cycle of a broiler chicken is 42 days.  After this short time, they are slaughtered.  As a result of the short generation time in poultry, one can observe changes in microbial populations as a result of the use of vaccines, antibiotics and disinfectants,” said Prof Bragg.   

“Much of my research effort has been directed towards the control of infectious coryza in layers, which is caused by the bacterium Avibacterium paragallinarum.  This disease is a type of sinusitis in the layer chickens and can cause a drop in egg product of up to 40%,” said Prof Bragg.

The vaccines used around the world in an attempt to control this disease are all inactivated vaccines. One of the most important points is the selection of the correct strains of the bacterium to use in the vaccine.

Prof Bragg established that in South Africa, there are four different serovars of the bacterium and one of these, the serovar C-3 strain, was believed to be unique to Southern Africa. He also recently discovered this serovar for the first time in Israel, thus indicating that this serovar might have a wider distribution than originally believed.

Vaccines used in this country did not contain this serovar.  Prof Bragg established that the long term use of vaccines not containing the local South African strain resulted in a shift in the population distribution of the pathogen.

Prof Bragg’s research activities also include disease control in parrots and pigeons.   “One of the main research projects in my group is on the disease in parrots caused by the circovirus Beak and Feather Disease virus. This virus causes serious problems in the parrot breeding industry in this country. This virus is also threatening the highly endangered and endemic Cape Parrot,” said Prof Bragg.

Prof Bragg’s research group is currently working on the development of a DNA vaccine which will assist in the control of the disease, not only in the parrot breeding industry, but also to help the highly endangered Cape Parrot in its battle for survival.

“Not all of our research efforts are directed towards infectious coryza or the Beak and Feather Disease virus.  One of my Masters students is currently investigating the cell receptors involved in the binding of Newcastle Disease virus to cancerous cells and normal cells of humans. This work will also eventually lead to a possible treatment of cancer in humans and will assist with the development of a recombinant vaccine for Newcastle disease virus,” said Prof Bragg.

We are also currently investigating an “unknown” virus which causes disease problems in poultry in the Western Cape,” said Prof Bragg.
 
“Although disinfection has been extensively used in the poultry industry, it has only been done at the pre-placement stage. In other words, disinfectants are used before the birds are placed into the house. Once the birds are placed, all use of disinfectants stops,” said Prof Bragg.

“Disinfection and bio security can be seen as the ‘Cinderella’ of disease control in poultry.  This is also true for human medicine. One just has to look at the high numbers of people who die from hospital-acquired infections to realise that disinfection is not a concept which is really clear in human health care,” said Prof Bragg.

Much research has been done in the control of diseases through vaccination and through the use of antibiotics. “These pillars of disease control are, however, starting to crumble and more effort is needed on disinfection and bio security,” said Prof Bragg.

Prof Bragg has been working in close co-operation with a chemical manufacturing company in Stellenbosch to develop a unique disinfectant which his highly effective yet not toxic to the birds.

As a result of this unique product, he has developed the continual disinfection program for use in poultry. In this program the disinfectant is used throughout the production cycle of the birds. It is also used to ensure that there is excellent pre-placement disinfection.

“The program is extensively used for the control of infectious diseases in the parrot-breeding industry in South Africa and the product has been registered in 15 countries around the world with registration in the USA in the final process,” said Prof Bragg.

“Although the problem of plasmid mediated resistance to disinfectants is starting to rear its ugly head, this has allowed for the opening of a new research field which my group will hopefully exploit in the near future,” he said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept