Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 March 2023 | Story Profs Gladys Kigozi-Male, Christo Heunis, and Michelle Engelbrecht | Photo Supplied
Prof Christo Heunis, Prof Michelle Engelbrecht, Prof Gladys Kigozi-Male
From the left, Prof Christo, Prof Michelle Engelbrecht, and Prof Gladys Kigozi-Male.

 Opinion article by Profs Gladys Kigozi-Male, Christo Heunis, and Michelle Engelbrecht, Centre for Health Systems Research and Development, University of the Free State.


Each year on 24 March, the world commemorates World TB (Tuberculosis) Day. This date coincides with the day in 1882 when Robert Koch announced his discovery of the Mycobacterium Tuberculosis, the germ that causes TB. This infectious disease is transmitted through airborne droplets when an infected person coughs, sings, shouts, or sneezes. TB primarily affects the lungs (i.e., pulmonary TB), but other organs in the body such as the pleura, lymph nodes, abdomen, genitourinary tract, skin, joints and bones, or meninges (i.e., extra-pulmonary TB) can also be affected. TB can be cured; effective anti-TB drugs have been available for almost eight decades. Despite this, TB continues to wreak havoc across the world and in South Africa. According to a report released by the World Health Organisation (WHO), an estimated 304 000 new TB cases were reported in South Africa in 2021 and 56 000 people succumbed to the disease in the same year

A world without TB

In 2014, the sixty-seventh World Health Assembly endorsed a global strategy and targets for TB prevention, care, and control. The strategy envisions a world without TB, aiming to end the epidemic by 2035. By this target date, a reduction in TB deaths of 95% and new infections of 90% – compared to the respective levels in 2015 – are anticipated. Further to this, the United Nations’ Stop TB Partnership was mandated to drive activities to end the global TB epidemic. In 2015, the partnership launched the 90-(90)-90 targets; to reach at least 90% of people with TB and place them on appropriate treatment, including at least 90% of vulnerable populations such as people living with HIV, and to ensure that at least 90% of people with TB are successfully treated. Despite commendable progress, persisting high TB infection and death rates are adversely affecting global and national efforts to end the TB epidemic. With a treatment success rate of only 78% in 2020, South Africa is sorely challenged to attain the global target of 95%.

TB with mental health illness

One of the challenges confronting TB control is the frequent comorbidity of TB with mental health illness. There is compelling evidence linking TB to common mental health problems such as depression, anxiety, and alcohol misuse. Research indicates that TB patients can experience mental health problems at any time during the course of their TB treatment. Undiagnosed mental illness among TB patients may result in poor health-seeking behaviour and non-adherence to treatment, subpar quality of life, and negative treatment outcomes. The WHO's Global End TB Strategy thus recommends integrated patient-centred TB care. This implies that TB care should be provided in close collaboration with other primary health-care (PHC) programmes such as mental health. However, in many countries – South Africa included – efforts to integrate mental health and TB care are confronted by challenges such as limited capacity, nonrecognition of mental health as a problem, insufficient resources, and TB-related social stigma. Consequently, mental health conditions in TB patients are often un-/under-/mis-diagnosed.

Taking depression as a compelling example, a scoping review reported the prevalence of depression as high as 84% among people with TB in studies conducted internationally. However, little is known about the prevalence of depression among TB patients in South Africa. Using a nine-item Patient Health Questionnaire, we assessed probable depression among a sample of TB patients attending PHC facilities in the Free State. We found that almost half (46,1%) of the 208 patients interviewed had probable depression, with 22,6%, 18,8%, and 4,8% having mild, moderate, and severe symptoms, respectively. Probable depression was almost four times more likely among patients diagnosed with extra-pulmonary TB compared to pulmonary TB patients. HIV-infected TB patients undergoing antiretroviral therapy were more than twice as likely to experience symptoms of depression compared to their counterparts who were not undergoing such therapy. This could possibly be attributed to non-adherence to antiretroviral therapy. Studies elsewhere have established a significant association between depression and ART non-adherence. We further found that the longer patients were retained on TB treatment, the less likely they were to display symptoms of depression.

Important to monitor TB patients for depression

Based on these findings, it is important to monitor TB patients for symptoms of depression – particularly those with comorbid HIV – in PHC settings. At the same time, ensuring that patients stay on treatment by providing adequate support for treatment adherence may help to mitigate depression during TB treatment. 

The theme for this year’s World TB Day is ‘Yes! We can end TB’. It is a call for concerted multi-sectoral collaboration between governments, civil society, communities, academia and technical partners, international aid and scientific organisations, the private sector, and disease control programmes in the country to eliminate the TB epidemic. To this end, TB patients attending PHC facilities in South Africa need to be routinely screened for mental health illness. Given the critical shortage of mental health specialists, screening for mental illnesses could be undertaken by trained and well-supervised non-specialist healthcare cadres such as community health workers.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept