Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 March 2023 | Story Prof Frikkie Maré | Photo Supplied
Prof Frikkie Mare
Prof Frikkie Maré is the Academic Departmental Head: Agricultural Economics, University of the Free State

Opinion article by Prof Frikkie Maré, Department of Agricultural Economics, University of the Free State.
President Cyril Ramaphosa recently announced a state of disaster due to the electricity crisis and the appointment of the new Minister of Electricity in the Presidency, Dr Kgosientsho Ramokgopa. Although there are many arguments for and against the state of disaster and the position of a Minister of Electricity, I think all South Africans agree that drastic measures must be taken to improve the current situation. However, I do not think the state of disaster, or the Minister of Electricity will bring any quick fixes to the table, and therefore we have to assume the crisis will remain in the short to medium term.

The Cause of the Crisis

As South Africans, our biggest crisis at this stage is load shedding. We are confronted with darkness daily, or even twice or thrice a day. Although the impact of load shedding varies according to the time of day it is implemented, it generally hinders us from doing our work, preparing food, and relaxing in front of the television after work. It directly impacts the quality of life of those who need electricity for oxygen machines for them to breathe. It causes damage to our electrical appliances, especially due to power surges when the electricity is turned back on. In short, load shedding is disrupting our lives. It is a nuisance we do not need, and the sooner it ends, the better.

Load shedding may be be a crisis for us as citizens, but it is Eskom’s solution to keep the national grid from collapsing. Thus, the real cause of the crisis is not load shedding but the inability of Eskom to supply enough electricity to meet the demand. The second big concern is the rising cost of electricity in South Africa. From 2007 to 2022, electricity prices increased by 653% in an attempt by Eskom to increase revenue to try and catch up with its heavy debt burden while simultaneously trying to maintain the current power stations and add some new generation capacity.

The problem

South Africa, up until load shedding started in 2007, was always praised as one of the countries in the world with the most stable electricity supply, and electricity was priced among the lowest in the world. Our economy thus developed around the national grid and is heavily reliant on it. Given the above, our food system faces three problems. First and most visible is load shedding that is causing interrupted national power supply and increasing production and processing costs as fuel generators and solar power must be relied on. Secondly, the cost of food production, processing, and distribution increases sharply as national electricity prices increase. Third, new investments in the food chain are discouraged as it is heavily reliant on electricity, which there is not enough of.

The impact

Over the last number of months, the media was full of the impact of load shedding on the food system in South Africa. Visually it ranged from photos and videos of withered irrigated crops which failed as there were not enough hours of electricity to supply water. There were pictures of chicken farms full of dead broilers that died when the heating and ventilation systems could not function during load shedding. Many articles also warned that load shedding would hurt food security in South Africa as it would not be possible to produce or process enough food.

These reported impacts of load shedding on food security caused quite a frenzy among consumers as people tend to run with what is announced in headlines without reading or understanding the context. Consumers immediately fear a situation where there will be insufficient food in South Africa as the headlines read that food security is under pressure.  

Yes, although all the photos, videos and articles in the news might be true and certainly do impact food security, we must also remember that food security is a combination of the availability and affordability of food.  

The impact of load shedding on food production depends on the type of production system. While load shedding has a minimal impact on extensive red meat production, it can be detrimental to intensive systems like poultry production, especially if electrical heating is used to regulate the temperature. It also negatively affects producers relying on irrigation to water their crops as the quality and quantity of the crop will be influenced.

The effect of load shedding can be severe on certain primary producers and even cause farming operations to close. Still, it will not necessarily result in a food shortage in the country as our primary agricultural sector is diverse. However, the price of certain commodities will increase due to a lower supply and higher production costs, negatively influencing food affordability.

The larger problem with load shedding can be found in terms of processing the food, especially fresh produce reliant on a sustained cold chain. For food safety and quality reasons, fresh produce must be kept at constant temperatures, and processors and distributors thus have no choice but to use expensive private electricity generation, further pushing up the cost of food.

Another problem is that, for example, the cold rooms of processors are connected to generators, as power failures might happen even when load shedding is not a problem. Still, the processing line cannot operate without grid-supplied electricity. Although there is thus enough food in the country on a commodity level, these commodities cannot be processed into final food products as fast as in the past. This bottle-neck effect further reduces the supply of food products and increases their price.

We often forget about the impact of load shedding on the consumers’ food choices. If you need electricity to prepare food, the availability of electricity at the time you need to prepare it will affect what you eat. The problem is that more affordable foods usually take longer to prepare, while the quick-to-prepare, ready-to-eat fast foods are expensive. The higher demand for these more expensive products due to load shedding puts further upward pressure on the price of food.

So where are the monsters?

The electricity crisis impacts all roleplayers in the food value chain, from primary producers to final consumers. Although load shedding is the most visible monster here, the fast-increasing price of electricity and the general electricity shortage that discourages future investment are also lurking in the dark and contributing to problems in the overall food system. In my opinion, the electricity crisis currently does not yet threaten food security in terms of availability. Still, it is creating a monster in terms of food prices (inflation) and thus making food less affordable.  

Although private solar power and fuel generators do assist in alleviating some of the influences of the electricity crises, it is not the solution. The problem with solar power, for users requiring large amounts of electricity, is that it is too expensive to install storage capacity (batteries) to use during the night. You also have a problem when it is overcast and rainy, so solar is a mere addition to supplement the national grid during the day. On the other hand, fuel generators can supply electricity 24 hours a day. Still, only the fuel cost to generate 1kW is double what Eskom charges, making it too expensive in the long run.

In my view, the only option to ensure the sustainability of the food value chain in future is to get the national electricity grid functional again. There are many short-term solutions, but none is currently sustainable enough to provide affordable energy needs. Although it will certainly take time to get Eskom fully functional again, I do not think we will run out of food in South Africa. However, we must tighten our belts to be able to afford food while the monsters lurk in the dark.


For more information contact Frikkie Maré at MareFA@ufs.ac.za

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept