Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 May 2023 | Story Kekeletso Takang | Photo Supplied
Faculty of Education shapes learners’ dreams
Stakeholders forming the multidisciplinary team and a learner from Kgotsofalo Primary School at the event on 21 April 2023, are from the left: Dina Mashiyane, Dr Vusiwana Babane, Ronet Vrey, a learner from Kgotsofalo Primary School, and Prof Bekithemba Dube.

There has been a clarion call within the education sector for primary school intervention strategies. As an institution that invests in education in its surrounding areas and beyond, the University of the Free State (UFS) has heeded the call to impactfully support societal development as outlined in its Vision 130. Through its Faculty of Education, the UFS has adopted the Kgotsofalo Primary School in the Free State to help shape the minds of the learners in this rural school.    

Dr Vusiwana Babane, Lecturer in the Faculty of Education, identified the school – situated about 46 km from the UFS Bloemfontein Campus – as part of a community engagement project that aims to transform the lives of children in low-income communities, in order to eradicate and break the vicious cycle of poverty in their families and communities. The project also seeks to inform stakeholders about the role that higher education institutions can play in supporting farm and rural schools.

Multidisciplinary approach

Prof Bekithemba Dube, acting Head of the Department of Education Foundations in the Faculty of Education, says the initiative with Kgotsofalo Primary School is a culmination of efforts to engage the community around the UFS. “Dr Babane and I visited the school in March 2023 to establish the needs of the school, which could help in planning and exploring intervention strategies. We established that, among others, their needs included motivation for learners, career guidance, library and sports resources. This implied that we needed a multidisciplinary approach. We invited Grade 7 learners from the school to attend motivational and career guidance sessions. We then started collaborating with colleagues from the Education Science Centre, KovsieSport, and the UFS Library and Information Services (Sasol Library) to co-host the learners and for further interventions at the school.”

On 21 April 2023, the learners, teachers, and representatives of the school governing body (SGB) visited the UFS. Hosted at the newly built UFS Education Science Centre, the learners participated in and explored various science experiments. A visit to the UFS library was also part of the package and the learners were treated to motivation, career guidance, and souvenirs from the Faculty of Education, before concluding their visit with a tour to KovsieSport. 

Masontaha Mosuoe, one of the learners who delivered an acceptance speech that brought many to tears, thanked the UFS for the experience. “Today, I would like to thank the UFS for giving our school the opportunity to be here; as you all know, education on the farms is not like the ones in the city. On the farms, children struggle to go to school because the schools are not enough. Thank you for giving us the experience of varsity life and shaping our dreams at a very young age.” 

The Principal of Kgotsofalo Primary School, Mmadikeledi Seepamore, also expressed her gratitude to the university. “Seed was sown and will continue to grow. The experience was educational, fun, and good and changed my learners’ way of thinking.”

Click here for more information on the programmes and other offerings and initiatives in the Faculty of Education.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept