Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2023 | Story Leonie Bolleurs | Photo Supplied
Prof André Roodt
Prof Andreas Roodt was recently awarded the MT Steyn Prize for Natural Science and Technology Excellence from the SA Akademie vir Wetenskap en Kuns. He will receive the prize, sponsored by Sanlam, at a function scheduled for September this year.

Prof Andreas Roodt, former Head of the Department of Chemistry at the University of the Free State (UFS) and retired Distinguished Professor in the same department, was recently awarded the MT Steyn Prize for Natural Science and Technology Excellence from the SA Akademie vir Wetenskap en Kuns.

The prize, a major recognition of his life's work, was presented to him for his contribution to the exploration and sustained development of natural science and technology and the successful application thereof in broader society.

Impacting society

About receiving the prize, he says it was a big surprise, but he is very proud to be honoured with this special award, “being an Afrikaans kid from a ‘platteland’ school outside Bloemfontein.”

Prof Roodt’s research focuses on understanding the reaction mechanisms of mainly inorganic coordination chemical systems that are critical to different industrial, medical, environmental, and metal beneficiation processes.

His research, for instance, contributes to important compounds and processes relevant to nuclear medicine and potential cancer therapy. Not so long ago, he registered a patent on this in Europe, Japan, and the USA that could help to diagnose and potentially treat cancer-related tumours in the future.

In addition, he continues to work on several projects aimed at developing cleaner industrial processes in the South African petrochemical industry. He is also focusing on more efficient ways of accessing the country’s mineral resources.

Career highlights

Throughout his academic career, Prof Roodt has achieved many significant milestones. He was extensively involved in crystallography for more than 30 years. One of his career highlights was being elected as the President of the European Crystallographic Association from 2012 to 2015, an organisation with more than 35 member countries.

In this field, he established an X-ray crystallographic facility in the UFS Department of Chemistry, which was officially named the ‘Roodt XRD Lab’ at the end of 2021.

He also sees his journey with the diverse group of 41 PhD and 54 MSc students (Afrikaans, English, Sesotho, Setswana, and isiXhosa) as another notable achievement in his career.

Other outstanding moments in Prof Roodt's career were his collaborations with research leaders from countries such as the USA, UK, Switzerland, Italy, Sweden, France, Croatia, India, Japan, Russia, the Netherlands, Germany, and Tunisia. These collaborations have allowed him to be recognised by peers worldwide and have demonstrated that Africa and South Africa can produce high-quality and relevant research that can compete on an international level.

The future

Despite his appointment as a Distinguished Professor and his commitment to finishing uncompleted work and assisting younger colleagues both in South Africa and abroad, Prof Roodt retired more than a year ago. He is now enjoying his retirement with his wife, children, and grandchildren, while also devoting time to his passion for collecting aloe plants and generating new hybrids.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept