Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2023 | Story Leonie Bolleurs | Photo Supplied
Prof André Roodt
Prof Andreas Roodt was recently awarded the MT Steyn Prize for Natural Science and Technology Excellence from the SA Akademie vir Wetenskap en Kuns. He will receive the prize, sponsored by Sanlam, at a function scheduled for September this year.

Prof Andreas Roodt, former Head of the Department of Chemistry at the University of the Free State (UFS) and retired Distinguished Professor in the same department, was recently awarded the MT Steyn Prize for Natural Science and Technology Excellence from the SA Akademie vir Wetenskap en Kuns.

The prize, a major recognition of his life's work, was presented to him for his contribution to the exploration and sustained development of natural science and technology and the successful application thereof in broader society.

Impacting society

About receiving the prize, he says it was a big surprise, but he is very proud to be honoured with this special award, “being an Afrikaans kid from a ‘platteland’ school outside Bloemfontein.”

Prof Roodt’s research focuses on understanding the reaction mechanisms of mainly inorganic coordination chemical systems that are critical to different industrial, medical, environmental, and metal beneficiation processes.

His research, for instance, contributes to important compounds and processes relevant to nuclear medicine and potential cancer therapy. Not so long ago, he registered a patent on this in Europe, Japan, and the USA that could help to diagnose and potentially treat cancer-related tumours in the future.

In addition, he continues to work on several projects aimed at developing cleaner industrial processes in the South African petrochemical industry. He is also focusing on more efficient ways of accessing the country’s mineral resources.

Career highlights

Throughout his academic career, Prof Roodt has achieved many significant milestones. He was extensively involved in crystallography for more than 30 years. One of his career highlights was being elected as the President of the European Crystallographic Association from 2012 to 2015, an organisation with more than 35 member countries.

In this field, he established an X-ray crystallographic facility in the UFS Department of Chemistry, which was officially named the ‘Roodt XRD Lab’ at the end of 2021.

He also sees his journey with the diverse group of 41 PhD and 54 MSc students (Afrikaans, English, Sesotho, Setswana, and isiXhosa) as another notable achievement in his career.

Other outstanding moments in Prof Roodt's career were his collaborations with research leaders from countries such as the USA, UK, Switzerland, Italy, Sweden, France, Croatia, India, Japan, Russia, the Netherlands, Germany, and Tunisia. These collaborations have allowed him to be recognised by peers worldwide and have demonstrated that Africa and South Africa can produce high-quality and relevant research that can compete on an international level.

The future

Despite his appointment as a Distinguished Professor and his commitment to finishing uncompleted work and assisting younger colleagues both in South Africa and abroad, Prof Roodt retired more than a year ago. He is now enjoying his retirement with his wife, children, and grandchildren, while also devoting time to his passion for collecting aloe plants and generating new hybrids.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept