Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2023 | Story Leonie Bolleurs | Photo Supplied
Spineless Cactus
Axel Tarrisse (far left), a PhD student in the Department of Sustainable Food Systems, working on the biogas and fodder potential of spineless cactus in Africa. Pictured with him are Prof Maryna de Wit, his supervisor and Associate Professor in the UFS Department of Sustainable Food Systems and Development, and Dr Herman Fouché from the Agricultural Research Council.

The spineless cactus is a unique perennial plant that is able to yield close to 40 tons of dry matter per hectare per year with a rainfall of 500 mm per annum. “This equates eight tons of biomethane or 11 000 litres of diesel-equivalent energy per hectare,” says Axel Tarrisse, a PhD student in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), who is working on the biogas and fodder potential of spineless cactus in Africa.

Tarrisse believes biogas, produced from the spineless cactus, has the potential to complement the supply of South Africa’s existing industrial energy companies to produce sustainable jet fuel and diesel and a variety of other products with the gas-to-liquid process they use.

Developing biogas

He says with rainfall, key nutrients, carbon dioxide, and solar energy it is possible to produce biomass from cactus.

“First, we harvest the cactus and macerate it prior to going into an anaerobic digester where it is heated to 38°C, the same as a cow’s body temperature. Inside the digester, naturally occurring bacteria, similar to those found in their stomachs, break down the cactus, resulting in the production of biogas. This biogas is composed of both methane and carbon dioxide,” he explains.

According to him, biogas generated through this process can be used in a number of ways. This includes running generators to produce electricity or burning it to generate heat. It will also serve as a feedstock to replace coal and natural gas used by companies such as PetroSA and Sasol in their production of synthetic renewable fuels.

“The methane can also be separated from the carbon dioxide and compressed into bottles, creating compressed biomethane. This can be used as a replacement for liquid petroleum gas (LPG), as well as petrol and diesel in vehicles, such as bakkies, tractors, buses, and delivery trucks.”

The carbon dioxide produced in the process can, for example, be used to replace the fossil-based carbon dioxide typically used in the production of carbonated beverages. Additionally, it can be applied to extend the shelf life of packaged foods, serve as a water softener, and even be applied to a variety of industrial applications.

Commercialisation 

Biogas/biomethane is already produced in Mexico on a commercial scale. In Northeast Brazil, farmers have planted 600 000 hectares of spineless cactus, also known as Palma Forrageira, but the machinery needed to harvest it only became commercially available this year.

Back home in South Africa, just 30 km outside of Bloemfontein, Barren Energy farm is at Stage 1 with 140 hectares of high-density cactus planted to provide the initial feedstock for anaerobic digestion. With 600 hectares, they will be able to produce five million litres of diesel-equivalent methane.

Tarrisse says, “With the right methodology and management system, producing biogas from the spineless cactus will be adopted relatively quickly on a commercial scale.”

He believes that the lack of investment in cultivating the spineless cactus as a crop for fodder in South Africa may be due to a few factors. “It is easier to stick to what is known, such as irrigating lucerne and maize and managing these crops with existing planters, pest management solutions, and harvesting machinery than to develop local machinery and management solutions for a perfectly adapted crop,” he says. 

Compelling reasons

According to Tarrisse, there are several compelling reasons to consider the spineless cactus as a source of biogas in South Africa.

Firstly, he explains, “Only the cactus pads, harvested from high-density plantations (20 000 plants per hectares), are used for biogas production.”

“Secondly, the spineless cactus can yield large volumes of biomass from marginal semi-arid land where conditions are unsuitable for conventional crop cultivation. This makes it an ideal option for the 65% of South African land that receives less than 500 mm of rainfall annually.”

Thirdly, he says, “The plant contains 30 to 50% of easily digestible sugars, which degrades easily in an anaerobic digester. This simple, low-tech process can provide a substantial amount of baseload energy with relatively limited capital expenditure, which is particularly important in developing countries such as South Africa where capital is difficult to raise.”

“On top of that, anaerobic digestion only extracts carbon, oxygen, and hydrogen molecules from the cactus, while most of the macro- and micronutrients, water, and some fibres remain in the digestate. This nutrient-rich cactus digestate can then be spread on the cactus fields, reducing the need for fertiliser once the plantation has been fertilised in the first two years of implementation.”

Societal impact

Besides the benefits of producing biogas from the cactus plant, there is also the opportunity of job creation. “This farming can create one million direct job opportunities from only 3% of South Africa’s land area, approximately 4 million hectares,” says Tarrisse.

He is of the opinion that if production was at scale, as opposed to the current small orchard-style farming of cactus, there would be substantial biomass available to sustain not only biomethane, but also to support various bio-industries, such as protein production through cactus fermentation, biomaterials as a substitute for wood-based cellulose, organic acids, and bioplastics. “Consequently, cactus provides a climate-resilient, drought-resistant, and perennial feedstock for food, feed, fibre, and fuel in semi-arid Southern Africa,” he says.

Tarrisse states that this initiative also has the potential to significantly reduce migration from rural to urban areas, therefore addressing issues related to the growth of urbanisation, such as the provision of infrastructure and crime.

News Archive

UFS research project aims to stimulate reflection on theological studies
2017-06-20

Description: Book, Theology and post Apartheid condition  Tags: Book, Theology and post Apartheid condition

The first book in the ‘UFS Theological
Exploration’ academic series, called Theology
and the Post(Apartheid) Condition
, has just
been released.
Photo: Supplied

 

The first study book with the title Theology and the Post(Apartheid) Condition, which is part of a new academic series by the Faculty of Theology and Religion at the University of the Free State, is now available. Volume 1, compiled by Professor Rian Venter as editor, is the first book in the ‘UFS Theological Exploration’ academic series, which the faculty plans to release.

Transformation
Professor Venter says the transformation of processes and practices in communicating and creating knowledge has become an urgent task for public universities in a democratic South Africa. Much reflection has already gone into the methods and scope of transformation in higher education.

Although the faculty has done work on the implications of this for theology, there is one area of investigation that has not received much attention. It concerns the role of theological disciplines such as Old and New Testament, Missiology and Systematic Theology and Practical Theology, and specifically the relationship between academic disciplines and societal growth. The book focuses on these challenges and contains the intellectual undertakings of the contributors who are all lecturers, research fellows and post-graduate students linked to the faculty.

The questions
The key questions addressed are: what are the contours of the (post)apartheid condition and what are the implications for responsible discipline practices in theology. Professor Venter says the chapters in the book are logically arranged and moves from wider to more specific concerns. The first three chapters suggest broad perspectives on the challenges for theology in higher education, chart the changes, and make some suggestions for the future.

A dynamic field of study
The book states that theology has already experienced profound and radical changes over the past decade, which is known to us. All the chapters demonstrate these fundamental shifts, which have taken place in all theological sub-disciplines. Professor Venter says the contributions in the book illustrate that theology is a dynamic field of study, and is pursued with enthusiasm and commitment. Not all disciplines in theology are investigated for the book. However, the studies reflect the interests of the theologians in the Faculty of Theology at the UFS. Professor Venter hopes that the volume might stimulate further reflection of a similar nature by other theologians.

New insights
Through the ‘UFS Theological Exploration’ research series, the faculty hopes to stimulate new insights and new developments in academic progress and overall human growth. Series editor Professor Francois Tolmie says it is a fact that strong university research is necessary to achieve academic progress and advance human prospering. He says the faculty's research series will make a valuable contribution to these causes. Professor Tolmie says the ‘UFS Theological Explorations’ contains research of the highest academic standard which has been peer-reviewed to make significant educational contributions to core theological issues in South Africa and overseas.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept