Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2023 | Story Leonie Bolleurs | Photo Supplied
Spineless Cactus
Axel Tarrisse (far left), a PhD student in the Department of Sustainable Food Systems, working on the biogas and fodder potential of spineless cactus in Africa. Pictured with him are Prof Maryna de Wit, his supervisor and Associate Professor in the UFS Department of Sustainable Food Systems and Development, and Dr Herman Fouché from the Agricultural Research Council.

The spineless cactus is a unique perennial plant that is able to yield close to 40 tons of dry matter per hectare per year with a rainfall of 500 mm per annum. “This equates eight tons of biomethane or 11 000 litres of diesel-equivalent energy per hectare,” says Axel Tarrisse, a PhD student in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), who is working on the biogas and fodder potential of spineless cactus in Africa.

Tarrisse believes biogas, produced from the spineless cactus, has the potential to complement the supply of South Africa’s existing industrial energy companies to produce sustainable jet fuel and diesel and a variety of other products with the gas-to-liquid process they use.

Developing biogas

He says with rainfall, key nutrients, carbon dioxide, and solar energy it is possible to produce biomass from cactus.

“First, we harvest the cactus and macerate it prior to going into an anaerobic digester where it is heated to 38°C, the same as a cow’s body temperature. Inside the digester, naturally occurring bacteria, similar to those found in their stomachs, break down the cactus, resulting in the production of biogas. This biogas is composed of both methane and carbon dioxide,” he explains.

According to him, biogas generated through this process can be used in a number of ways. This includes running generators to produce electricity or burning it to generate heat. It will also serve as a feedstock to replace coal and natural gas used by companies such as PetroSA and Sasol in their production of synthetic renewable fuels.

“The methane can also be separated from the carbon dioxide and compressed into bottles, creating compressed biomethane. This can be used as a replacement for liquid petroleum gas (LPG), as well as petrol and diesel in vehicles, such as bakkies, tractors, buses, and delivery trucks.”

The carbon dioxide produced in the process can, for example, be used to replace the fossil-based carbon dioxide typically used in the production of carbonated beverages. Additionally, it can be applied to extend the shelf life of packaged foods, serve as a water softener, and even be applied to a variety of industrial applications.

Commercialisation 

Biogas/biomethane is already produced in Mexico on a commercial scale. In Northeast Brazil, farmers have planted 600 000 hectares of spineless cactus, also known as Palma Forrageira, but the machinery needed to harvest it only became commercially available this year.

Back home in South Africa, just 30 km outside of Bloemfontein, Barren Energy farm is at Stage 1 with 140 hectares of high-density cactus planted to provide the initial feedstock for anaerobic digestion. With 600 hectares, they will be able to produce five million litres of diesel-equivalent methane.

Tarrisse says, “With the right methodology and management system, producing biogas from the spineless cactus will be adopted relatively quickly on a commercial scale.”

He believes that the lack of investment in cultivating the spineless cactus as a crop for fodder in South Africa may be due to a few factors. “It is easier to stick to what is known, such as irrigating lucerne and maize and managing these crops with existing planters, pest management solutions, and harvesting machinery than to develop local machinery and management solutions for a perfectly adapted crop,” he says. 

Compelling reasons

According to Tarrisse, there are several compelling reasons to consider the spineless cactus as a source of biogas in South Africa.

Firstly, he explains, “Only the cactus pads, harvested from high-density plantations (20 000 plants per hectares), are used for biogas production.”

“Secondly, the spineless cactus can yield large volumes of biomass from marginal semi-arid land where conditions are unsuitable for conventional crop cultivation. This makes it an ideal option for the 65% of South African land that receives less than 500 mm of rainfall annually.”

Thirdly, he says, “The plant contains 30 to 50% of easily digestible sugars, which degrades easily in an anaerobic digester. This simple, low-tech process can provide a substantial amount of baseload energy with relatively limited capital expenditure, which is particularly important in developing countries such as South Africa where capital is difficult to raise.”

“On top of that, anaerobic digestion only extracts carbon, oxygen, and hydrogen molecules from the cactus, while most of the macro- and micronutrients, water, and some fibres remain in the digestate. This nutrient-rich cactus digestate can then be spread on the cactus fields, reducing the need for fertiliser once the plantation has been fertilised in the first two years of implementation.”

Societal impact

Besides the benefits of producing biogas from the cactus plant, there is also the opportunity of job creation. “This farming can create one million direct job opportunities from only 3% of South Africa’s land area, approximately 4 million hectares,” says Tarrisse.

He is of the opinion that if production was at scale, as opposed to the current small orchard-style farming of cactus, there would be substantial biomass available to sustain not only biomethane, but also to support various bio-industries, such as protein production through cactus fermentation, biomaterials as a substitute for wood-based cellulose, organic acids, and bioplastics. “Consequently, cactus provides a climate-resilient, drought-resistant, and perennial feedstock for food, feed, fibre, and fuel in semi-arid Southern Africa,” he says.

Tarrisse states that this initiative also has the potential to significantly reduce migration from rural to urban areas, therefore addressing issues related to the growth of urbanisation, such as the provision of infrastructure and crime.

News Archive

Graduates should make a difference as leaders and be agents of change
2017-06-22

Description: Mid-year graduation read more 22 June 2017 Tags: Mid-year graduation read more 22 June 2017

More than 5 000 degrees will be conferred over six days
and eleven ceremonies at the UFS mid-year graduation
ceremonies.
Photo: Johan Roux

Livestream of Graduation Ceremonies

“Make the choice to make a difference as the leaders of the future.” These words of Dr Susan Vosloo, Cardiothoracic Surgeon and member of the University of the Free State (UFS) Council, echoed the call to graduates on the first three days of the UFS mid-year graduation ceremonies. The ceremonies are taking place in the Callie Human Centre on the Bloemfontein Campus from 19 to 26 June 2017.

Dr Vosloo, also an alumna of the UFS, was one of six guest speakers at the biggest set of graduation ceremonies in the university’s history. A spirit of excitement is part of the festivities, as a total of 5 258 degrees will be conferred over six days in eleven ceremonies. The graduation week will conclude on 26 June 2017, when 460 master’s and doctoral degrees will be conferred – 72 of these are doctoral degrees.

Stand up and be counted
Dr Vosloo urged the graduands at the afternoon session on 19 June 2017 to stand up and be counted. “What we need are leaders who treasure integrity, dignity, accountability, transparency, and who will focus on the common challenges which we all face today.”

Dr Khotso Mokhele, UFS Chancellor, also encouraged the graduates to be agents of change who shouldn’t conform to the current system. “Decide that it is your country and that you will decide what it should be. Then it will not be the corrupt experiment which the current government turned it into. We wish you well. Go and be the agents of transformation.”

Ambassadors of the UFS
Prof Francis Petersen, UFS Rector and Vice-Chancellor, asked the graduates to make a contribution: “Be excellent ambassadors of the UFS, and make the UFS, your families, and our country proud by your strong, innovative, ethical, and excellent contributions.” He was the guest speaker during the morning and afternoon sessions on 20 June 2017.

He also said that they should never forget the supporting role others played in their success, whatever form it took.

Do it for those who fought for SA
Justice Connie Mocumie, Judge of Appeal at the Supreme Court of Appeal, encouraged the graduates to go out and contribute to the development of the country. She was the guest speaker at the morning and afternoon ceremonies on 21 June 2017.

“It is important for you to continue being experts in your area of expertise,” she said.

“Today is the beginning of better days to come. Do it for the legacy of those who fought for our country in pursuit of a better South Africa.”

Dipiloane Phutsisi, Principal and Chief Executive Officer of the Motheo TVET College in the Free State, said everyone is destined for greatness. “In the words of Dr Martin Luther King: Everyone has the power for greatness, not for fame but greatness, because greatness is determined by service.” She was the guest speaker at the morning session on 19 June 2017.

Click here to see a list of Deans’ and Senate medals awarded.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept