Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2023 | Story Leonie Bolleurs | Photo Supplied
Spineless Cactus
Axel Tarrisse (far left), a PhD student in the Department of Sustainable Food Systems, working on the biogas and fodder potential of spineless cactus in Africa. Pictured with him are Prof Maryna de Wit, his supervisor and Associate Professor in the UFS Department of Sustainable Food Systems and Development, and Dr Herman Fouché from the Agricultural Research Council.

The spineless cactus is a unique perennial plant that is able to yield close to 40 tons of dry matter per hectare per year with a rainfall of 500 mm per annum. “This equates eight tons of biomethane or 11 000 litres of diesel-equivalent energy per hectare,” says Axel Tarrisse, a PhD student in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), who is working on the biogas and fodder potential of spineless cactus in Africa.

Tarrisse believes biogas, produced from the spineless cactus, has the potential to complement the supply of South Africa’s existing industrial energy companies to produce sustainable jet fuel and diesel and a variety of other products with the gas-to-liquid process they use.

Developing biogas

He says with rainfall, key nutrients, carbon dioxide, and solar energy it is possible to produce biomass from cactus.

“First, we harvest the cactus and macerate it prior to going into an anaerobic digester where it is heated to 38°C, the same as a cow’s body temperature. Inside the digester, naturally occurring bacteria, similar to those found in their stomachs, break down the cactus, resulting in the production of biogas. This biogas is composed of both methane and carbon dioxide,” he explains.

According to him, biogas generated through this process can be used in a number of ways. This includes running generators to produce electricity or burning it to generate heat. It will also serve as a feedstock to replace coal and natural gas used by companies such as PetroSA and Sasol in their production of synthetic renewable fuels.

“The methane can also be separated from the carbon dioxide and compressed into bottles, creating compressed biomethane. This can be used as a replacement for liquid petroleum gas (LPG), as well as petrol and diesel in vehicles, such as bakkies, tractors, buses, and delivery trucks.”

The carbon dioxide produced in the process can, for example, be used to replace the fossil-based carbon dioxide typically used in the production of carbonated beverages. Additionally, it can be applied to extend the shelf life of packaged foods, serve as a water softener, and even be applied to a variety of industrial applications.

Commercialisation 

Biogas/biomethane is already produced in Mexico on a commercial scale. In Northeast Brazil, farmers have planted 600 000 hectares of spineless cactus, also known as Palma Forrageira, but the machinery needed to harvest it only became commercially available this year.

Back home in South Africa, just 30 km outside of Bloemfontein, Barren Energy farm is at Stage 1 with 140 hectares of high-density cactus planted to provide the initial feedstock for anaerobic digestion. With 600 hectares, they will be able to produce five million litres of diesel-equivalent methane.

Tarrisse says, “With the right methodology and management system, producing biogas from the spineless cactus will be adopted relatively quickly on a commercial scale.”

He believes that the lack of investment in cultivating the spineless cactus as a crop for fodder in South Africa may be due to a few factors. “It is easier to stick to what is known, such as irrigating lucerne and maize and managing these crops with existing planters, pest management solutions, and harvesting machinery than to develop local machinery and management solutions for a perfectly adapted crop,” he says. 

Compelling reasons

According to Tarrisse, there are several compelling reasons to consider the spineless cactus as a source of biogas in South Africa.

Firstly, he explains, “Only the cactus pads, harvested from high-density plantations (20 000 plants per hectares), are used for biogas production.”

“Secondly, the spineless cactus can yield large volumes of biomass from marginal semi-arid land where conditions are unsuitable for conventional crop cultivation. This makes it an ideal option for the 65% of South African land that receives less than 500 mm of rainfall annually.”

Thirdly, he says, “The plant contains 30 to 50% of easily digestible sugars, which degrades easily in an anaerobic digester. This simple, low-tech process can provide a substantial amount of baseload energy with relatively limited capital expenditure, which is particularly important in developing countries such as South Africa where capital is difficult to raise.”

“On top of that, anaerobic digestion only extracts carbon, oxygen, and hydrogen molecules from the cactus, while most of the macro- and micronutrients, water, and some fibres remain in the digestate. This nutrient-rich cactus digestate can then be spread on the cactus fields, reducing the need for fertiliser once the plantation has been fertilised in the first two years of implementation.”

Societal impact

Besides the benefits of producing biogas from the cactus plant, there is also the opportunity of job creation. “This farming can create one million direct job opportunities from only 3% of South Africa’s land area, approximately 4 million hectares,” says Tarrisse.

He is of the opinion that if production was at scale, as opposed to the current small orchard-style farming of cactus, there would be substantial biomass available to sustain not only biomethane, but also to support various bio-industries, such as protein production through cactus fermentation, biomaterials as a substitute for wood-based cellulose, organic acids, and bioplastics. “Consequently, cactus provides a climate-resilient, drought-resistant, and perennial feedstock for food, feed, fibre, and fuel in semi-arid Southern Africa,” he says.

Tarrisse states that this initiative also has the potential to significantly reduce migration from rural to urban areas, therefore addressing issues related to the growth of urbanisation, such as the provision of infrastructure and crime.

News Archive

UFS welcomes Constitutional Court’s ruling on its Language Policy
2017-12-29



The executive management of the University of the Free State (UFS) welcomes today’s judgement by the Constitutional Court in favour of the university’s Language Policy. The judgement follows an appeal lodged by AfriForum against the judgement and order delivered by the Supreme Court of Appeal (SCA) on the implementation of the UFS Language Policy on 28 March 2017. 
 
In a majority ruling, Chief Justice Mogoeng Mogoeng denied AfriForum’s application for leave to appeal the SCA’s ruling, and said the UFS Council’s approval of the Language Policy was lawful and constitutionally valid. The court found that the adoption of the Language Policy was neither inconsistent with the provisions of the Constitution, nor did it violate the Constitutional rights of any students and/or staff members of the UFS.
 
Today’s landmark judgement is not only paving the way for the UFS to continue with the implementation plan for its Language Policy as approved by the UFS Council on 11 March 2016, but it is also an indication of the value which the university’s decision to change its Language Policy to English as primary medium of instruction has on higher education in South Africa.
 
“The judgement by the Constitutional Court is not a victory against Afrikaans as language. The UFS will continue to develop Afrikaans as an academic language. A key feature of the UFS Language Policy is flexibility and the commitment to strive for a truly multilingual environment. Today’s judgement allows the UFS to proceed with the implementation of its progressive approach to a language-rich environment that is committed to multilingualism,” says Prof Francis Petersen, Rector and Vice-Chancellor of the UFS.
 
According to Prof Petersen, the UFS is dedicated to the commitments in the Language Policy and, in particular, to make sure that language development is made available to students in order to ensure their success as well as greater levels of academic literacy – especially in English. This includes contributing to the development of Sesotho and isiZulu as higher-education languages within the context of the needs of the different UFS campuses.
 
“We can now continue to ensure that language is not used or perceived as a tool for the social exclusion of staff and/or students on any of the three campuses, and continue to promote a pragmatic learning and administrative environment committed to and accommodative to linguistic diversity within the regional, national, and international environments in which the UFS operates,” says Prof Petersen.
 
The UFS is the first university in South Africa appearing before the Constitutional Court regarding its Language Policy. 
 
During 2017, the Faculties of Health Sciences, the Humanities, and Law started with the implementation of the new Language Policy at first-year level. This includes the presentation of tutorials in Afrikaans. The remaining faculties will start implementing the policy as from 2018.

Released by:
Lacea Loader (Director: Communication and Brand Management)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za
Fax: +27 51 444 6393

Related articles:
UFS welcomes unanimous judgement about its Language Policy in the Supreme Court of Appeal (28 March 2017)
Judgement in the Supreme Court of Appeal about UFS Language Policy (17 November 2016)
Implications of new Language Policy for first-year students in 2017 (17 October 2016)
UFS to proceed with appealing to Supreme Court of Appeal regarding new Language Policy (29 September 2016)
UFS to lodge application to appeal judgment about new Language Policy (22 July 2016)
High Court ruling about new UFS Language Policy (21 July 2016)
UFS Council approves a new Language Policy (11 March 2016)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept