Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2023 | Story Leonie Bolleurs | Photo Supplied
Spineless Cactus
Axel Tarrisse (far left), a PhD student in the Department of Sustainable Food Systems, working on the biogas and fodder potential of spineless cactus in Africa. Pictured with him are Prof Maryna de Wit, his supervisor and Associate Professor in the UFS Department of Sustainable Food Systems and Development, and Dr Herman Fouché from the Agricultural Research Council.

The spineless cactus is a unique perennial plant that is able to yield close to 40 tons of dry matter per hectare per year with a rainfall of 500 mm per annum. “This equates eight tons of biomethane or 11 000 litres of diesel-equivalent energy per hectare,” says Axel Tarrisse, a PhD student in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), who is working on the biogas and fodder potential of spineless cactus in Africa.

Tarrisse believes biogas, produced from the spineless cactus, has the potential to complement the supply of South Africa’s existing industrial energy companies to produce sustainable jet fuel and diesel and a variety of other products with the gas-to-liquid process they use.

Developing biogas

He says with rainfall, key nutrients, carbon dioxide, and solar energy it is possible to produce biomass from cactus.

“First, we harvest the cactus and macerate it prior to going into an anaerobic digester where it is heated to 38°C, the same as a cow’s body temperature. Inside the digester, naturally occurring bacteria, similar to those found in their stomachs, break down the cactus, resulting in the production of biogas. This biogas is composed of both methane and carbon dioxide,” he explains.

According to him, biogas generated through this process can be used in a number of ways. This includes running generators to produce electricity or burning it to generate heat. It will also serve as a feedstock to replace coal and natural gas used by companies such as PetroSA and Sasol in their production of synthetic renewable fuels.

“The methane can also be separated from the carbon dioxide and compressed into bottles, creating compressed biomethane. This can be used as a replacement for liquid petroleum gas (LPG), as well as petrol and diesel in vehicles, such as bakkies, tractors, buses, and delivery trucks.”

The carbon dioxide produced in the process can, for example, be used to replace the fossil-based carbon dioxide typically used in the production of carbonated beverages. Additionally, it can be applied to extend the shelf life of packaged foods, serve as a water softener, and even be applied to a variety of industrial applications.

Commercialisation 

Biogas/biomethane is already produced in Mexico on a commercial scale. In Northeast Brazil, farmers have planted 600 000 hectares of spineless cactus, also known as Palma Forrageira, but the machinery needed to harvest it only became commercially available this year.

Back home in South Africa, just 30 km outside of Bloemfontein, Barren Energy farm is at Stage 1 with 140 hectares of high-density cactus planted to provide the initial feedstock for anaerobic digestion. With 600 hectares, they will be able to produce five million litres of diesel-equivalent methane.

Tarrisse says, “With the right methodology and management system, producing biogas from the spineless cactus will be adopted relatively quickly on a commercial scale.”

He believes that the lack of investment in cultivating the spineless cactus as a crop for fodder in South Africa may be due to a few factors. “It is easier to stick to what is known, such as irrigating lucerne and maize and managing these crops with existing planters, pest management solutions, and harvesting machinery than to develop local machinery and management solutions for a perfectly adapted crop,” he says. 

Compelling reasons

According to Tarrisse, there are several compelling reasons to consider the spineless cactus as a source of biogas in South Africa.

Firstly, he explains, “Only the cactus pads, harvested from high-density plantations (20 000 plants per hectares), are used for biogas production.”

“Secondly, the spineless cactus can yield large volumes of biomass from marginal semi-arid land where conditions are unsuitable for conventional crop cultivation. This makes it an ideal option for the 65% of South African land that receives less than 500 mm of rainfall annually.”

Thirdly, he says, “The plant contains 30 to 50% of easily digestible sugars, which degrades easily in an anaerobic digester. This simple, low-tech process can provide a substantial amount of baseload energy with relatively limited capital expenditure, which is particularly important in developing countries such as South Africa where capital is difficult to raise.”

“On top of that, anaerobic digestion only extracts carbon, oxygen, and hydrogen molecules from the cactus, while most of the macro- and micronutrients, water, and some fibres remain in the digestate. This nutrient-rich cactus digestate can then be spread on the cactus fields, reducing the need for fertiliser once the plantation has been fertilised in the first two years of implementation.”

Societal impact

Besides the benefits of producing biogas from the cactus plant, there is also the opportunity of job creation. “This farming can create one million direct job opportunities from only 3% of South Africa’s land area, approximately 4 million hectares,” says Tarrisse.

He is of the opinion that if production was at scale, as opposed to the current small orchard-style farming of cactus, there would be substantial biomass available to sustain not only biomethane, but also to support various bio-industries, such as protein production through cactus fermentation, biomaterials as a substitute for wood-based cellulose, organic acids, and bioplastics. “Consequently, cactus provides a climate-resilient, drought-resistant, and perennial feedstock for food, feed, fibre, and fuel in semi-arid Southern Africa,” he says.

Tarrisse states that this initiative also has the potential to significantly reduce migration from rural to urban areas, therefore addressing issues related to the growth of urbanisation, such as the provision of infrastructure and crime.

News Archive

Sport results: Tennis, Netball, badminton, athletics
2009-05-05

During the Mega-intervarsity Tournament held at Sun City last week, both the University of the Free State’s (UFS) men’s and women’s tennis teams beat their opponents. The Kovsies women’s team beat the Pukke 15-0, Tukkies 15-1 and Maties 12-5.

The Kovsies men’s team beat their respective opponents as follows: Maties A 12-6, Maties B 15-0, Pukke A 9-7, Tukkies A 14-1 and Pukke B 15-0.

Janine de Kock from KovsieSport said that she was satisfied with these achievements. “For the past two years the women have won the University Sports South Africa (USSA) tournament and now again this tournament. What makes this achievement special is the fact that it was the first tournament that four of the women’s team members played for the UFS.”

“I am also very satisfied with the achievements of the men’s team. They ended sixth in last year’s USSA tournament. This year, at a tournament where the top four universities in terms of tennis were present, they won,” said Janine.
Rensia Henning in action during the Mega-intervarsity Tournament that took place at Sun City last week.
Photos: Jeanine de Kok
 
Netball: Hard work gets rewarded - (April 2009)

Three Kovsies were selected from the South African National Netball team to the Senior Top 12 Team that will represent South Africa at the SPAR Challenge, a three nation’s test series against Botswana and Fiji. These matches will take place towards the end of May in Pretoria.

The three students are Elzet Engelbrecht, Maryka Holtzhausen, en Adele Niemand.


Kovsie students compete at badminton championships

One former student from the University of the Free State (UFS) Chris Dednam, and one current Kovsie student Annari Viljoen are included in the National Badminton Team that represented South Africa from 17 to 24 April 2009 at the All Africa Badminton Championships in Nairobi, Kenya. They also participated in the Kenya International Championships from 25 to 27 April 2009.

Chris Dednam and Annari Viljoen and with them Roelof Dednam, also a former Kovsie student, were included in the team that will participate at the Sudirman Cup in Guangzhou, China. The Sudirman Cup that will take place from 10 to 17 May 2009 is the world mixed team badminton championship and takes place every two years.

Kovsie athletes win medals

Kovsie athletes excelled at the South African Students Athletics Championships (USSA) that was held in Stellenbosch by winning a total of 15 medals.

The medal winners are:
Gold: Thuso Mpuang for the 200m, Johan Cronjè for the 1 500m, Maryna Swanepoel for the half marathon and Marizette Badenhorst for hammer throw.
Silver: Thuso Mpuang for the 100m, Johan Cronjè for the 5 000m, Charles le Roux for triple jump, Ronè Reynecke for the 800m, and Abongile Lerotholi for 1 500m.
Bronze: Kagisho Kumbane for 100m and 200m, Boy Soke for half marathon, Charles le Roux for long jump, Thandi Malindi for the 3 000m steeple chase, and Marike Steyn for triple jump.

In the team competition the Kovsie men’s team received third place and the women’s team fourth place.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept