Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2023 | Story Leonie Bolleurs | Photo Supplied
Spineless Cactus
Axel Tarrisse (far left), a PhD student in the Department of Sustainable Food Systems, working on the biogas and fodder potential of spineless cactus in Africa. Pictured with him are Prof Maryna de Wit, his supervisor and Associate Professor in the UFS Department of Sustainable Food Systems and Development, and Dr Herman Fouché from the Agricultural Research Council.

The spineless cactus is a unique perennial plant that is able to yield close to 40 tons of dry matter per hectare per year with a rainfall of 500 mm per annum. “This equates eight tons of biomethane or 11 000 litres of diesel-equivalent energy per hectare,” says Axel Tarrisse, a PhD student in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), who is working on the biogas and fodder potential of spineless cactus in Africa.

Tarrisse believes biogas, produced from the spineless cactus, has the potential to complement the supply of South Africa’s existing industrial energy companies to produce sustainable jet fuel and diesel and a variety of other products with the gas-to-liquid process they use.

Developing biogas

He says with rainfall, key nutrients, carbon dioxide, and solar energy it is possible to produce biomass from cactus.

“First, we harvest the cactus and macerate it prior to going into an anaerobic digester where it is heated to 38°C, the same as a cow’s body temperature. Inside the digester, naturally occurring bacteria, similar to those found in their stomachs, break down the cactus, resulting in the production of biogas. This biogas is composed of both methane and carbon dioxide,” he explains.

According to him, biogas generated through this process can be used in a number of ways. This includes running generators to produce electricity or burning it to generate heat. It will also serve as a feedstock to replace coal and natural gas used by companies such as PetroSA and Sasol in their production of synthetic renewable fuels.

“The methane can also be separated from the carbon dioxide and compressed into bottles, creating compressed biomethane. This can be used as a replacement for liquid petroleum gas (LPG), as well as petrol and diesel in vehicles, such as bakkies, tractors, buses, and delivery trucks.”

The carbon dioxide produced in the process can, for example, be used to replace the fossil-based carbon dioxide typically used in the production of carbonated beverages. Additionally, it can be applied to extend the shelf life of packaged foods, serve as a water softener, and even be applied to a variety of industrial applications.

Commercialisation 

Biogas/biomethane is already produced in Mexico on a commercial scale. In Northeast Brazil, farmers have planted 600 000 hectares of spineless cactus, also known as Palma Forrageira, but the machinery needed to harvest it only became commercially available this year.

Back home in South Africa, just 30 km outside of Bloemfontein, Barren Energy farm is at Stage 1 with 140 hectares of high-density cactus planted to provide the initial feedstock for anaerobic digestion. With 600 hectares, they will be able to produce five million litres of diesel-equivalent methane.

Tarrisse says, “With the right methodology and management system, producing biogas from the spineless cactus will be adopted relatively quickly on a commercial scale.”

He believes that the lack of investment in cultivating the spineless cactus as a crop for fodder in South Africa may be due to a few factors. “It is easier to stick to what is known, such as irrigating lucerne and maize and managing these crops with existing planters, pest management solutions, and harvesting machinery than to develop local machinery and management solutions for a perfectly adapted crop,” he says. 

Compelling reasons

According to Tarrisse, there are several compelling reasons to consider the spineless cactus as a source of biogas in South Africa.

Firstly, he explains, “Only the cactus pads, harvested from high-density plantations (20 000 plants per hectares), are used for biogas production.”

“Secondly, the spineless cactus can yield large volumes of biomass from marginal semi-arid land where conditions are unsuitable for conventional crop cultivation. This makes it an ideal option for the 65% of South African land that receives less than 500 mm of rainfall annually.”

Thirdly, he says, “The plant contains 30 to 50% of easily digestible sugars, which degrades easily in an anaerobic digester. This simple, low-tech process can provide a substantial amount of baseload energy with relatively limited capital expenditure, which is particularly important in developing countries such as South Africa where capital is difficult to raise.”

“On top of that, anaerobic digestion only extracts carbon, oxygen, and hydrogen molecules from the cactus, while most of the macro- and micronutrients, water, and some fibres remain in the digestate. This nutrient-rich cactus digestate can then be spread on the cactus fields, reducing the need for fertiliser once the plantation has been fertilised in the first two years of implementation.”

Societal impact

Besides the benefits of producing biogas from the cactus plant, there is also the opportunity of job creation. “This farming can create one million direct job opportunities from only 3% of South Africa’s land area, approximately 4 million hectares,” says Tarrisse.

He is of the opinion that if production was at scale, as opposed to the current small orchard-style farming of cactus, there would be substantial biomass available to sustain not only biomethane, but also to support various bio-industries, such as protein production through cactus fermentation, biomaterials as a substitute for wood-based cellulose, organic acids, and bioplastics. “Consequently, cactus provides a climate-resilient, drought-resistant, and perennial feedstock for food, feed, fibre, and fuel in semi-arid Southern Africa,” he says.

Tarrisse states that this initiative also has the potential to significantly reduce migration from rural to urban areas, therefore addressing issues related to the growth of urbanisation, such as the provision of infrastructure and crime.

News Archive

UFS council elects Nwaila and Hancke
2005-03-15

Dr Charles Nwaila, Superintendent-General of Education in the Free State, was elected Vice-chairperson of the UFS Council and Judge Faan Hancke was re-elected as Chairperson today.

According to the Rector and Vice-Chancellor, Prof Frederick Fourie, the election of Dr Nwaila is an important achievement for the UFS as Dr Nwaila is a well known leader in education in the Free State.

Dr Nwaila pledged to work constructively with the UFS council and management to ensure that the UFS benefits all people of the province and the country.

The appointments are valid for a term of three years from 1 June 2005 to 31 May 2008.

The elections took place at the quarterly meeting of the UFS Council where a number of other key transformation steps were approved.

The Council approved a Strategic Plan for the UFS which reflects a renewed focus on transformation of the institution, calling it an important roadmap for the future of the UFS.

According to Prof Fourie, the Strategic Plan tried strike a balance between continuity and change, addressing the need to remain an excellent university in an ever-changing context and environment.

Prof Fourie said transformation had many aspects and dimensions and could not be reduced to an issue of numbers.

The Strategic Plan identifies five strategic priorities and corresponding challenges in the next phase of transformation.

The priorities are:

  • quality and excellence

  • equity, diversity and redress

  • financial sustainability

  • regional co-operation and engagement.

  • outward thrust

Prof Fourie said that besides the five strategic priorities the plan also reflected concrete actions and interventions to address them.

He said the renewed focus on transformation is embedded in the priorities and specific actions that are identified.

The Council congratulated the management for the roadmap and for the achievements that have already been achieved in terms of transformation.

In order to draft a comprehensive Transformation Plan that will give substance to certain aspects of the UFS Strategic plan – or roadmap – the Council approved the establishment of a Transformation Plan Team.

The team will consist of about 16 people, which includes the two coordinators, Prof Teuns Verschoor, Vice-Rector: Academic Operations, and Dr Ezekiel Moraka, Vice-Rector: Student Affairs.

According to Prof Verschoor, the team was chosen and approved by the Executive Management earlier for the individual contributions that they could make.

While the individuals do not represent particular constituencies on campus they are a very diverse group of persons in terms of race, gender and various sections of the campus and the satellite campuses.

Prof Fourie, said there was an urgency and importance attached to the work of the Transformation Plan Team.

He said that while the team must produce a plan within a tight deadline, the task must be carried out very well, which could mean different stages in the work of the team.

According to the Rector, the UFS must take the lead in best practice transformation, while not underestimating the complexity of the issues facing the UFS.

The full list of names will be finalized soon.

MEDIA RELEASE
Issued by: Mnr Anton Fisher
Director: Strategic Communication
Cel: 072 207 8334
Tel: (051) 401-2749
11 Maart 2005

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept